Summary

活细胞成像早期自噬活动:Omegasomes与超越

Published: July 27, 2013
doi:

Summary

时间推移显微镜荧光标记的细胞自噬标记允许自噬反应具有高时空分辨率的动态监测。使用特定的自噬和细胞器标记在3种不同颜色的组合,我们可以按照自噬体形成在一个强大的空间和时间上下文的蛋白质的贡献。

Abstract

自噬细胞反应缺乏的营养物质,特别是氨基酸的情况下触发。自噬是指由形成的双层膜结构,称为自噬体,即隔离细胞质中,寿命长的蛋白质和蛋白质聚集体,有缺陷的细胞器,甚至是病毒或细菌。自噬体最终导致大量降解它们的内容与溶酶体融合,所产生的营养成分被再循环返回到细胞质。因此,细胞自噬是细胞的动态平衡至关重要,自噬失调可导致疾病,最显着的神经退行性疾病,衰老和癌症。

自噬体的形成是一个非常复杂的过程,其的细胞已分配一组特定的蛋白质,被称为核心自噬机械。是该核心自噬机械的功能辅以不同的细胞过程中所涉及的额外的蛋白质, 在MEMBRANê贩运,线粒体和溶酶体生物学中。自噬体的形成和降解的协调,这些蛋白质构成的高度动态和复杂的响应的自噬。活细胞成像允许按照每个自噬相关蛋白的分子贡献水平的自噬体形成一个单一的事件,并实时的,因此该技术提供了一个高时空分辨率。

在这里,我们使用的细胞系稳定表达GFP-DFCP1的,我们的分析建立了空间和时间的情况下。 DFCP1的痕迹omegasomes,易制毒化学结构导致自噬体的形成。可以打上一个红色或青色荧光标记蛋白质的兴趣点(POI)。不同的细胞器,如急诊室,线粒体和溶酶体,都参与自噬体的形成在不同的步骤,并且可以使用一个特定的跟踪染料标记。时间推移显微镜AUTOPhagy在这个试验性设置,使得要被提取的信息有关的第四维, 时间。因此,我们可以按照自噬在空间和时间上的POI的贡献。

Introduction

自噬是一个高度动态的过程,这就需要大量的蛋白质,协调的最终结果自噬体形成1-3。显微镜的技术可能是最常用的应用为研究自噬4。大多数自噬蛋白的本地化已被广泛地研究了在固定的细胞,通过免疫染色的内源性蛋白和荧光标记的外源蛋白质的表达。此外,电子显微镜(EM),单独和组合使用免疫金标,精致的细节描 ​​述了这些结构5,6。尽管这些技术已经建立了一个事实,即我们了解自噬体形成的3个维度空间,他们并没有提供足量的4 维度的信息-时间。活细胞成像克服了这个障碍,因为它允许自噬体的形成可能接近ble到实时7。这种技术最早是研究自噬吉森和同事8,并已被越来越多地用于今后。

时间推移显微镜捕获的POI在活细胞中,并经过一段时间的本土化。通过比较这些信息与一个特征的自噬和/或细胞器标记活细胞成像分析,可以把兴趣点,在更大的空间和时间范围内自噬体的形成。活细胞成像分析是基于POI本地化沿自噬体的形成的所有步骤的重复捕获,而固定细胞成像是基于一个单一的捕获。因此,活细胞成像可以证明在自噬体形成的具体步骤的POI的贡献,而固定细胞成像,只能承担角色的POI,其平均定位的基础上同时捕获许多自噬在不同阶段其lifecyCLE。

虽然活细胞成像分析能力高的方法,它具有一些固有的局限性,这应该加以考虑。首先,活细胞成像的要求中的一个或多个外源性荧光标记蛋白的表达。荧光标记往往是体积大,它们有时可以改变一种蛋白质的行为,由于空间位阻的原因。这种情况加剧膜蛋白的,因为他们需要在有限的空间发挥作用的2维膜。值得注意的是,自噬体膜的结构,因此它们的形成需要大量的膜相关蛋白。

另一些问题是连接到该POI的表达水平。原则上,应表达的外源蛋白质与内源性蛋白的水平。这确保了其亚细胞定位的重要调节器将不饱和的,和日E解析生物相关。此外,应该避免的,自噬蛋白的过度表达时,他们都表达了以上的内源性水平,他们往往会抑制自噬反应9。相反,因为POI的表达水平应该是很高的,足以让一个很好的一段时间后,其本土化没有光漂白,要达到一个妥协。实现最佳的外源蛋白质在哺乳动物细胞中的表达水平,需要微调的特定的,但它是可行的,通过建立和筛选稳定表达细胞系的不同水平的POI。

即,可以实现与标准的荧光显微镜的空间分辨率是另一个限制因素。分辨率可能被限制为一定数量的原因,但在最好的情况下,将横向分辨率在250 nm附近。这意味着,比这更小的距离分隔的任何对象会出现连接(或作为一个单一的将代表大于他们实际上是在图像对象),小于250纳米的物体。因此,图像应始终被解释考虑到这一点和互补的技术,如EM,将需要解决精美的超结构的细节。

最后,活细胞成像的本质要求露出光电池,有可能在很长的一段时间。这可能会改变细胞的生理反应,这种现象被称为光毒性。

我们已成功地用于活细胞成像的PI3P结合蛋白DFCP1的第一次来形容,自噬来源于富含PI3P环状结构称为omegasomes,这是密切相关与ER股10,11。我们已经清楚地表明,LC3阳性结构开始形成在与omegasomes密切相关。在这里,我们建议,用人的细胞系稳定表达GFP-DFCP1活细胞成像的感兴趣的蛋白质,建立了一个强大的空间和时间的帧的表征,它的作用在自噬体的形成。

Protocol

1。细胞的制备种子的低传代次数的HEK-293T细胞稳定表达GFP-DFCP1对22毫米的圆形盖玻片的Dulbecco修饰老鹰的培养基(DMEM)中培养细胞过夜,至30-40%汇合(大致目标为80%汇合后2天 – 一天的活细胞成像)。 2。细胞转染准备转染复杂的混合,每块板,含100微升的OptiMEM的我减少血清培养基,3微升X-tremeGENE的DNA转染试剂和0.5微克pECFP-LC3质粒DNA。上下吹打,轻轻混?…

Representative Results

描述的协议,我们已经按照本地化CFP标记LC3稳定的细胞系表达GFP标记DFCP1的自噬诱导条件下,使用时间推移显微镜。这个实验的结果是2系列或成堆的图像,从绿色和蓝色通道之一,对应GFP-DFCP1和CFP-LC3的捕获。我们已进一步分析这些视频使用ImageJ,在以对应于单一的自噬体形成的协议部分中所描述的事件,创建蒙太奇。这种分析使我们能够证明LC3阳性的自噬体来源于一个阳性DFCP1的omegasome。在蒙太?…

Discussion

在这个协议中所描述的方法允许自噬体的形成过程中的蛋白质的定位的可视化。我们已经尝试了各种方法,可视化描述的事件,包括点扫描共聚焦,旋转盘共聚焦和全内反射荧光显微镜(TIRF)。我们发现,一般用途的标准宽视场落射荧光灵敏度和分辨率之间的最佳折衷。这可确保良好的信号噪声,最小photo-bleaching/photo-toxicity和快速收购。光学切片的缺乏不是一个问题,如果被选择的单元格的适当…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们的工作是支持的生物技术和生物科学研究理事会。我们想感谢我们恳请提供CFP-LC3的表达质粒吉森TAMOTSU教授。

Materials

Name of Reagent/Material Company Catalog Number Comments
DMEM Invitrogen 41965
OptiMEM I Invitrogen 31985-062
MitoTracker Red FM Invitrogen M22425
LysoTracker Red DND-99 Invitrogen L-7528
X-tremeGENE 9 DNA Transfection Reagent Roche Applied Science 6365787001
22 mm coverslips VWR 631-0159
35 mm plates Fisher NUNC 153066
Silicon grease RS Components Ltd. RS 494-124
O-rings Custom made
Attofluor Cell Chamber Invitrogen A-7816 Suggested alternative to custom-made O-rings
Microscope Olympus IX81 Inverted microscope
Objective Olympus UPLSAPO 100XO N.A. 1.4, W.D. 0.13, FN 26.5
Camera Hamamatsu ORCA-R2 C10600 10B Progressive scan interline CCD
Illuminator TILL Photonics Polychrome V Ultrafast monochromator
Incubation chamber Solent Scientific Cell^R IX81
Software Olympus SIS xcellence

References

  1. Mizushima, N. Autophagy: process and function. Genes Dev. 21, 2861-2873 (2007).
  2. Mizushima, N., Yoshimori, T., Ohsumi, Y. The role of Atg proteins in autophagosome formation. Annual review of cell and developmental biology. 27, 107-132 (2011).
  3. Klionsky, D. J. Autophagy: from phenomenology to molecular understanding in less than a decade. Nat. Rev. Mol. Cell Biol. 8, 931-937 (2007).
  4. Klionsky, D. J. Autophagy revisited: a conversation with Christian de Duve. Autophagy. 4, 740-743 (2008).
  5. Yla-Anttilba, P., Vihinen, H., Jokitalo, E., Eskelinen, E. L. 3D tomography reveals connections between the phagophore and endoplasmic reticulum. Autophagy. 5, 1180-1185 (2009).
  6. Hayashi-Nishino, M., et al. A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat. Cell Biol. 11, 1433-1437 (2009).
  7. Lippincott-Schwartz, J. Emerging in vivo analyses of cell function using fluorescence imaging (*). Annu. Rev. Biochem. 80, 327-332 (2011).
  8. Mizushima, N., et al. Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. The Journal of Cell Biology. 152, 657-668 (2001).
  9. Itakura, E., Mizushima, N. Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins. Autophagy. 6, 764-776 (2010).
  10. Axe, E. L., et al. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol. 182, 685-701 (2008).
  11. Walker, S., Chandra, P., Manifava, M., Axe, E., Ktistakis, N. T. Making autophagosomes: localized synthesis of phosphatidylinositol 3-phosphate holds the clue. Autophagy. 4, 1093-1096 (2008).

Play Video

Cite This Article
Karanasios, E., Stapleton, E., Walker, S. A., Manifava, M., Ktistakis, N. T. Live Cell Imaging of Early Autophagy Events: Omegasomes and Beyond. J. Vis. Exp. (77), e50484, doi:10.3791/50484 (2013).

View Video