Summary

单域液晶的弹性体和液晶橡胶纳米复合材料的制备

Published: February 06, 2016
doi:

Summary

We demonstrate the preparation of siloxane-based and epoxy-based liquid crystal elastomers (LCEs) and LCE nanocomposites. The LCEs are characterized with respect to reversible strain, liquid crystal ordering, and stiffness. As a potential application, we demonstrate their use as shape-responsive substrates in a custom device for active cell culture.

Abstract

LCES是形状响应材料具有完全可逆的形状变化和在医学应用潜力,组织工程,人工肌肉,并作为软机器人。这里,我们证明形状响应液晶弹性体(LCES)和LCE纳米复合材料的制备其形状的响应的表征,机械性能,和显微组织沿。两种类型LCES的 – 聚硅氧烷 – 基和环氧基 – 合成,对齐,和特征。基于聚硅氧烷的LCES通过两个交联步骤中,所施加的负载下的第二次制备,产生单畴LCES。聚硅氧烷LCE纳米复合材料是通过加入导电性炭黑纳米粒子的制备,无论是在整个批量的LCE的并向LCE表面。基于环氧LCES通过可逆酯化反应制备。基于环氧LCES通过一个单轴负载在升高(160℃)t时应用对准emperatures。对准LCES和LCE纳米复合材料使用的成像,二维X射线衍射测量,差示扫描量热法,和动态力学分析的组合,其特征相对于可逆应变,机械刚度,以及液晶排序。 LCES和LCE纳米复合材料可以用热和/或电势被刺激可控产生在细胞培养基的菌株,我们证明LCES的应用作为使用定做装置用于细胞培养的形状响应衬底。

Introduction

可以表现出快速的,可逆的,可编程的形状改变的材料是可取的一些新兴的应用1-9。形状响应支架可以帮助伤口愈合,治疗7。人工机器人可以在勘探或在有害或不安全的人类10环境中执行任务的帮助。形状响应弹性体是所希望的用于在活性细胞培养物,其中细胞在活性环境中培养的用11-14其它应用包括包装,传感,和药物递送。

液晶弹性体(LCE)与液晶订货15-20的聚合物网络。 LCES通过柔性聚合物网络与被称为介晶液晶分子相结合进行。 LCES的响应是从液晶秩序的偶合而得到影响介晶的排序的聚合物网络中的菌株,并刺激将基因率网的菌株,反之亦然。为了实现在没有外部负载的大的和可逆的形状变化,介晶必须在LCE单个方向对准。在LCES工作的一个常见实用的挑战是产生单畴LCES。另一个挑战是产生形状的变化响应于刺激其他比直接加热。这可以通过增加纳米颗粒或染料来LCE网络21-28来完成。

这里,我们证明单畴LCES和LCE纳米复合材料的制备。首先,我们证明了使用两步法首先由枯否等报道单畴LCES 制备。29,这仍然是一种制备单畴LCES,但实现取向均匀性和一致性的样品之间是具有挑战性的最流行 ​​的和公知的方法。我们证明可以使用标准的实验室设备很容易实现的方法,包括抽样的全部细节处理和准备。下一步,我们表明导电炭黑纳米颗粒如何可以被添加到LCES以产生导电性,电响应LCES。然后我们证明环氧基LCES的合成和对准。这些材料表现出可交换网络键,并且可以通过加热到高温,并施加均匀的载荷对齐。所有LCES通过宏观样品成像,X射线衍射测量和动态力学分析表征。最后,我们证明LCES为活跃细胞培养形状响应衬底中的一个潜在的应用。

Protocol

1.不结盟聚硅氧烷LCES的合成结合166.23毫克反应性液晶元(4-甲氧基苯基4-(3-丁烯氧基)苯甲酸酯),40毫克聚(hydromethylsiloxane),以及12.8毫克交联剂(1,4-二(10- undecenyloxybenzene)30 0.6无水毫升甲苯在一个小管形瓶(约13毫米直径和长度100毫米)装入带有搅拌棒,搅拌在35℃下该溶液25分钟使其溶解。 在一个单独的小瓶中,制备1重量%二氯(1,5-环辛二烯)的二氯甲烷 – 铂(?…

Representative Results

单畴LCES的形状响应由于与液晶有序网络结构的耦合。加热LCES导致在液晶有序参数的降低,产生沿主取向方向上的聚合物网络的缩写。这很容易通过放置一个LCE在电炉上可视化, 如图1A和1B。在从室温,沿着样品的长度LCE合同,上述各向同性转变温度收缩加热是一个最大值。样本也将成为上述各向同性转变温度光学透明的,而有些朦胧为低于各向?…

Discussion

In order to produce monodomain LCEs, the LCEs need to be uniaxially loaded during crosslinking. This is challenging in practice because the LCE is loaded when it is only partially crosslinked, and therefore is not mechanically robust and can easily break or tear. The procedure described above (steps 1.1 – 1.4) can produce monodomain LCEs consistently. One critical step is the removal of the LCE from the PTFE mold for loading at the appropriate time. If the LCE is removed too quickly, it will easily break or tear. On the…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作是由美国国家职业基金会(CBET-1336073至RV),ACS的石油研究基金(52345-DN17至RV),美国心脏协会(BGIA到JGJ),美国国家科学基金会(CAREER支持CBET-1055942至JGJ),健康/美国国家心脏,肺和血液研究所(1R21HL110330到JGJ),路易斯和桃子欧文和得克萨斯儿童医院的国家机构。

Materials

4-methoxyphenyl 4-(3-butenyloxy)benzoate TCI America M2106 Reactive mesogen
poly(methylhydrosiloxane) Gelest HMS-993 Reactive polysiloxane
1,4-di(10-undecenyloxybenzene) N/A N/A see: Ali, S. A., Al-Muallem, H. A., Rahman, S. U. & Saeed, M. T. Bis-isoxazolidines: A new class of corrosion inhibitors of mild steel in acidic media. Corrosion Science 50 (11), 3070–3077, doi:10.1016/j.corsci.2008.08.011 (2008)
(dichloro(1,5-cyclooctadiene)-platinum(II)  Sigma Aldrich 244937 Pt catalyst
PTFE mold N/A N/A fabricated at Rice machine shop
carbon black nanoparticles Cabot VULCAN® XC72R used in the synthesis of LCE nanocomposites
polystyrene Sigma Aldrich 331651 linear polystyrene 
4,4'-diglycidyloxybiphenyl N/A N/A see:  Giamberjni, M., Amendola, E. & Carfagna, C. Liquid Crystalline Epoxy Thermosets. Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 266 (1), 9–22, doi:10.1080/10587259508033628 (1995).
sebacic acid Sigma Aldrich 283258 C8 linking group for epoxy-LCE synthesis
hexadecanedioic acid Sigma Aldrich 177504 C16 linking group for epoxy-LCE synthesis
carboxydecyl-terminated polydimethylsiloxane Gelest DMS-B12 Siloxane linking group for epoxy-LCE synthesis
1,5,7-triazabicyclo[4.4.0] dec-5-ene Sigma Aldrich 345571 catalyst for reversible LCEs
carbon rods Ladd Research  30250 used in cell culture experiments
medical grade silicone adhesive Silbione MED ADH 4100 RTV used to adhere carbon rods to vessel

References

  1. Nikkhah, M., Edalat, F., Manoucheri, S., Khademhosseini, A. Engineering microscale topographies to control the cell-substrate interface. Biomaterials. 33 (21), 5230-5246 (2012).
  2. Mather, P. T., Luo, X., Rousseau, I. A. Shape Memory Polymer Research. Annu. Rev. Mater. Res. 39 (1), 445-471 (2009).
  3. Small, W., Singhal, P., Wilson, T. S., Maitland, D. J. Biomedical applications of thermally activated shape memory polymers. J. Mater. Chem. 20 (17), 3356-3366 (2010).
  4. Rickert, D., Lendlein, A., Peters, I., Moses, M. A., Franke, R. P. Biocompatibility testing of novel multifunctional polymeric biomaterials for tissue engineering applications in head and neck surgery: an overview. Eur. Arch. Oto-Rhino-Laryngol. Head Neck. 263 (3), 215-222 (2006).
  5. Chen, Q., Liang, S., Thouas, G. A. Elastomeric biomaterials for tissue engineering. Prog. Polym. Sci. 38 (3-4), 584-671 (2013).
  6. Mano, J. F. Stimuli-Responsive Polymeric Systems for Biomedical Applications. Adv. Eng. Mater. 10 (6), 515-527 (2008).
  7. Ratna, D., Karger-Kocsis, J. Recent advances in shape memory polymers and composites: a review. J. Mater. Sci. 43 (1), 254-269 (2008).
  8. Biggs, J., Danielmeier, K., et al. Electroactive Polymers: Developments of and Perspectives for Dielectric Elastomers. Angew. Chem. Int. Ed. 52 (36), 9409-9421 (2013).
  9. Ware, T. H., McConney, M. E., Wie, J. J., Tondiglia, V. P., White, T. J. Voxelated liquid crystal elastomers. Science. 347 (6225), 982-984 (2015).
  10. Shepherd, R. F., Ilievski, F., et al. Multigait soft robot. Proc. Natl. Acad. Sci. 108 (51), 20400-20403 (2011).
  11. Agrawal, A., Adetiba, O., Kim, H., Chen, H., Jacot, J. G., Verduzco, R. Stimuli-responsive liquid crystal elastomers for dynamic cell culture. J. Mater. Res. 30 (04), 453-462 (2015).
  12. Yang, P., Baker, R. M., Henderson, J. H., Mather, P. T. In vitro wrinkle formation via shape memory dynamically aligns adherent cells. Soft Matter. 9 (18), 4705-4714 (2013).
  13. Xu, X., Davis, K. A., Yang, P., Gu, X., Henderson, J. H., Mather, P. T. Shape Memory RGD-Containing Networks: Synthesis, Characterization, and Application in Cell Culture. Macromol. Symp. 309-310 (1), 162-172 (2011).
  14. Davis, K. A., Luo, X., Mather, P. T., Henderson, J. H. Shape Memory Polymers for Active Cell Culture. J Vis Exp. , e2903 (2011).
  15. Warner, M., Terentjev, E. M. . Liquid Crystal Elastomers. , (2003).
  16. Urayama, K. Selected Issues in Liquid Crystal Elastomers and Gels. Macromolecules. 40 (7), 2277-2288 (2007).
  17. Fleischmann, E. K., Zentel, R. Liquid-Crystalline Ordering as a Concept in Materials Science: From Semiconductors to Stimuli-Responsive Devices. Angew. Chem. Int. Ed. 52 (34), 8810-8827 (2013).
  18. Ohm, C., Brehmer, M., Zentel, R. Liquid Crystalline Elastomers as Actuators and Sensors. Adv. Mater. 22 (31), 3366-3387 (2010).
  19. Jiang, H., Li, C., Huang, X. Actuators based on liquid crystalline elastomer materials. Nanoscale. 5 (12), 5225-5240 (2013).
  20. Burke, K. A., Rousseau, I. A., Mather, P. T. Reversible actuation in main-chain liquid crystalline elastomers with varying crosslink densities. Polymer. 55 (23), 5897-5907 (2014).
  21. Chambers, M., Finkelmann, H., Remškar, M., Sánchez-Ferrer, A., Zalar, B., Žumer, S. Liquid crystal elastomer-nanoparticle systems for actuation. J. Mater. Chem. 19 (11), 1524-1531 (2009).
  22. Chambers, M., Zalar, B., Remskar, M., Zumer, S., Finkelmann, H. Actuation of liquid crystal elastomers reprocessed with carbon nanoparticles. Appl. Phys. Lett. 89 (24), 243116 (2006).
  23. Kohlmeyer, R. R., Chen, J. Wavelength-Selective IR Light-Driven Hinges Based on Liquid Crystalline Elastomer Composites. Angew. Chem. Int. Ed. 52 (35), 9234-9237 (2013).
  24. Liu, X., Wei, R., Hoang, P. T., Wang, X., Liu, T., Keller, P. Reversible and Rapid Laser Actuation of Liquid Crystalline Elastomer Micropillars with Inclusion of Gold Nanoparticles. Adv. Funct. Mater. 25 (20), 3022-3032 (2015).
  25. Marshall, J. E., Terentjev, E. M. Photo-sensitivity of dye-doped liquid crystal elastomers. Soft Matter. 9 (35), 8547-8551 (2013).
  26. Marshall, J. E., Ji, Y., Torras, N., Zinoviev, K., Terentjev, E. M. Carbon-nanotube sensitized nematic elastomer composites for IR-visible photo-actuation. Soft Matter. 8 (5), 1570-1574 (2012).
  27. Camargo, C. J., Campanella, H., et al. Localised Actuation in Composites Containing Carbon Nanotubes and Liquid Crystalline Elastomers. Macromol. Rapid Commun. 32, 1953-1959 (2011).
  28. Ahir, S. V., Squires, A. M., Tajbakhsh, A. R., Terentjev, E. M. Infrared actuation in aligned polymer-nanotube composites. Phys Rev B. 73 (8), 085420 (2006).
  29. Küpfer, J., Finkelmann, H. Nematic liquid single crystal elastomers. Macromol Chem Rapid Commun. 12 (12), 717-726 (1991).
  30. Ali, S. A., Al-Muallem, H. A., Rahman, S. U., Saeed, M. T. Bis-isoxazolidines: A new class of corrosion inhibitors of mild steel in acidic media. Corros. Sci. 50 (11), 3070-3077 (2008).
  31. Giamberjni, M., Amendola, E., Carfagna, C. Liquid Crystalline Epoxy Thermosets. Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. Mol. Cryst. Liq. Cryst. 266 (1), 9-22 (1995).
  32. Agrawal, A., Luchette, P., Palffy-Muhoray, P., Biswal, S. L., Chapman, W. G., Verduzco, R. Surface wrinkling in liquid crystal elastomers. Soft Matter. 8 (27), 7138-7142 (2012).
  33. Agrawal, A., Chipara, A. C., et al. Dynamic self-stiffening in liquid crystal elastomers. Nat Commun. 4, 1739 (2013).
  34. Sharma, A., Neshat, A., et al. Biodegradable and Porous Liquid Crystal Elastomer Scaffolds for Spatial Cell Cultures. Macromol. Biosci. 15 (2), 200-214 (2015).
  35. Yeh, L. C., Dai, C. F., et al. Neat poly(ortho-methoxyaniline) electrospun nanofibers for neural stem cell differentiation. J. Mater. Chem. B. 1, 5469-5477 (2013).
  36. Krause, S., Dersch, R., Wendorff, J. H., Finkelmann, H. Photocrosslinkable Liquid Crystal Main-Chain Polymers: Thin Films and Electrospinning. Macromol. Rapid Commun. 28 (21), 2062-2068 (2007).
  37. Liu, D., Broer, D. J. Light controlled friction at a liquid crystal polymer coating with switchable patterning. Soft Matter. 10 (40), 7952-7958 (2014).

Play Video

Cite This Article
Kim, H., Zhu, B., Chen, H., Adetiba, O., Agrawal, A., Ajayan, P., Jacot, J. G., Verduzco, R. Preparation of Monodomain Liquid Crystal Elastomers and Liquid Crystal Elastomer Nanocomposites. J. Vis. Exp. (108), e53688, doi:10.3791/53688 (2016).

View Video