Neonatal stroke is a significant cause of early brain injury requiring a translational model with consistent focal injury patterns and high reproducibility in order to enable study. This study describes the detailed surgical procedure for creating a non-hemorrhagic, unilateral focal ischemia-reperfusion injury in full-term-equivalent rodents.
A number of animal models have been used to study hypoxic-ischemic injury, traumatic injury, global hypoxia, or permanent ischemia in both the immature and mature brain. Stroke occurs commonly in the perinatal period in humans, and transient ischemia-reperfusion is the most common form of stroke in neonates. The reperfusion phase is a critical component of injury progression, which occurs over a period of days to weeks, and of the endogenous response to injury. This postnatal day 10 (p10) rat model of transient middle cerebral artery occlusion (tMCAO) creates a unilateral, non-hemorrhagic focal ischemia-reperfusion injury that can be utilized to study the mechanisms of focal injury and repair in the full-term-equivalent brain. The injury pattern that is produced by tMCAO is consistent and highly reproducible and can be confirmed with MRI or histological analyses. The severity of injury can be manipulated through changes in occlusion time and other methods that will be discussed.
Stroke during the neonatal period is a significant cause of death and disability, occurring in as many as 1 in 2,300 live births1. This leads to altered central nervous system development and increased long-term morbidity, including increased incidence of epilepsy, cerebral palsy, mental retardation, and other types of motor or cognitive dysfunction. The lifelong effects of early stroke make translational animal models essential for examining the mechanisms of injury and repair in this population, including strategies to protect the injured brain or to enhance repair.
Different ischemia models have been used to study brain injury in adult animals, and while the Rice-Vannucci (Modified Levine)2 procedure is commonly used to study hypoxic-ischemic injury in the developing brain, focal ischemia-reperfusion is a distinct mechanism of injury causing focal injury, with an injured core and penumbra and uninjured remote tissue. The Koizumi3 and Longa4 models were developed in adult rats to achieve transient middle cerebral artery occlusion via the common carotid artery (CCA) and external carotid artery (ECA), respectively. In both models, permanent ligation and cauterization of artery branches are important to minimize bleeding and to streamline the surgical procedure, which also causes adverse effects on the animal's ability to feed and to gain weight following injury. Furthermore, there are distinct injury mechanisms in the immature brain and specific patterns of injury seen as a result.
More recently, photothrombotic stroke (Rose-Bengal method)5 and permanent MCA ligation6 have been used to study neonatal and adult stroke. Both photothrombotic stroke and MCA ligation create permanent changes in cerebral blood flow that result in a lack of reperfusion. Reperfusion is a critical component of the development and progression of focal injury, with increased excitotoxicity, free radical formation, and nitric oxide production leading to delayed cell death that involves signaling cascades that are distinct from the ischemic phase7. Hypoxia-ischemia involves permanent unilateral carotid ligation followed by global hypoxia, which also differs from the cause of hypoxic-ischemic injury in humans and does not cause a consistent focal injury pattern, making study of the injured core and penumbra more challenging.
We have previously described a non-hemorrhagic ischemia-reperfusion stroke model in the immature rat using transient middle cerebral artery occlusion (MCAO)8,9,10. This is a less invasive method that accesses and occludes the MCA through the internal carotid artery without permanent ligation or cauterization. This provides a model of injury similar to the most common cause of stroke in the perinatal period11,12. This ischemia-reperfusion model of injury results in damage to the ipsilateral striatum and parieto-temporal cortex. This model of tMCAO also allows control over the severity of injury by varying the duration of occlusion. Examination of signaling pathways and histological changes in the injured core and penumbra and in the uninjured ipsilateral and contralateral tissue can further elucidate the mechanisms of injury and repair in the immature brain. This study will demonstrate this important injury model for the developing brain.
All animal research was approved by the University of California, San Francisco Committee on Animal Research and was performed in accordance with the Guide for the Care and Use of Laboratory Animals (US Department of Health and Human Services, Publication No. 85-23, 1985). Animals were closely monitored by veterinarians of the UCSF Institutional Animal Care and Use Committee (IACUC), accredited by AAALAC. One female Sprague-Dawley rat with an 8 day-old litter (10 pups per litter) was obtained. The mother and her pups were given food and water ad libitum and housed in a temperature- and light-controlled animal care facility with daily enrichment, per IACUC protocol, until the pups were 10 days old. All surgical instruments used in this procedure were autoclaved to ensure sterility. Sterility of instrument tips is maintained throughout the surgery.
1. Middle Cerebral Artery Occlusion
2. Reperfusion
NOTE: Occlusion is performed for 3 h to cause a moderate-to-severe amount of injury involving the striatum and cortex.
The severity of injury caused by tMCAO is highly dependent upon both the occlusion time and the experience of the surgeon. A 90-min occlusion often produces a mild to moderate injury pattern, while 3 h produces a moderate-to-severe injury. Severity of injury may be assessed through a variety of methods, including MRI, histology, or short- or long-term behavioral analyses. Figure 2 demonstrates an example of the DW-MRI performed 75 min into a 90-min occlusion, confirming ischemic injury involving the ipsilateral hemisphere. Diffusion weighted imaging demonstrates increased diffusion in the ipsilateral striatum and the majority of the ipsilateral cortex, without contralateral changes, during the acute ischemic phase. This correlates to a moderate level of long-term injury involving both the cortex and the deep gray matter.
Occlusion of the MCA results in cell death that begins in the striatum for less severe injury and develops worsening cortical and hippocampal injury for longer occlusion times and more severe injury. During optimization of the surgical technique, such as determining the suture insertion length, MRI is highly recommended, as it allows for the confirmation of proper suture placement and visualization of edema and injury progression during occlusion14,15,16. If MRI is not available, H&E or cresyl violet staining are simple and reliable histological methods to determine injury morphology and can be used at both early and late time points after the tMCAO. Figure 3 demonstrates a moderate-to-severe injury pattern on histopathological examination following a 3 h occlusion, demonstrating cyst formation and volume in the ipsilateral striatum and cortex.
Unbiased stereological quantification of cresyl-violet-stained sections to calculate the ratio of ipsilateral to contralateral hemispheric volume confirms ipsilateral ischemic-reperfusion injury. Specifically, after anesthetizing the animal with Euthasol, the brain was harvested by transcardiac perfusion in 0.1 M PBS with 4% paraformaldehyde. Following overnight postfixation and equilibration in 30% sucrose, the entire brain was sectioned at 50 µm intervals, and every twelfth section was selected, mounted, and stained with cresyl violet10.
Even with mild injury, locomotor changes, such as circling and hemiparesis, are noted during the occlusion period. With more severe injury, these changes will persist after reperfusion. Additional behavioral testing can be used to assess the severity of injury, including rotarod or cylinder rearing testing for sensorimotor function and the Morris water maze for cognitive function13.
Figure 1: Live Surgical Images of the tMCAO Procedure. (A) The first suture strand is looped around the ICA, as detailed in step 1.6. (B) The first temporary ligature is tied and the ICA is retracted. The second suture strand is looped around the ICA, lateral to the first suture strand, as detailed in step 1.9. (C) The silicone coated occlusion suture is fed into the arteriotomy site, as detailed in step 1.12. (D) The second temporary ligature is tied to secure the occluder in place, as detailed in step 1.14. Scale bar = 1 mm.
Figure 2: MRI During Occlusion Demonstrates the Appropriate Unilateral Injury. Anterior to posterior, coronal image slices of the DW-MRI, performed during a 90 min occlusion, demonstrate increased diffusion involving the ipsilateral hemisphere (arrows), which is consistent with ongoing ischemic injury in the acute phase. Reprinted with permission from Stroke11. Please click here to view a larger version of this figure.
Figure 3: Unilateral Injury Involving the Striatum and Cortex at 4 weeks following tMCAO. Posterior to anterior, cresyl-violet-stained coronal brain sections (each 50 µm) harvested from P38 animals demonstrate fairly severe injury (the arrows show ipsilateral cyst formation and reduced cortical and striatal volume) following a 3 h tMCAO at P10. The round hole on the left side represents a contralateral hemisphere identifier. Scale bar = 5 mm. Reprinted with permission from Neurobiology of Disease12. Please click here to view a larger version of this figure.
Critical steps within the protocol
First, it is important to maintain normothermia from the initiation of anesthesia until full recovery, as there are known effects of both hypothermia17 and hyperthermia18 on the progression of brain injury in both immature and mature animals. Second, while securing the animal and retracting the incision, optimal positioning to monitor breathing and to ensure that the trachea is free of compression is essential. Third, avoid squeezing or stretching the vagus nerve, as this may cause changes in heart rate with vagal stimulation. Fourth, because retraction of the ICA is necessary to control bleeding during the arteriotomy, attention must be paid to the degree of tension during retraction to avoid damaging the artery. If the artery does tear from retraction, or if there is a poor arteriotomy incision, the animal should be excluded from analysis due to the risk of hemorrhage and poor reperfusion.
Modifications and troubleshooting
Using MRI as a guide, the suture length may be optimized to ensure that the silicone tip properly occludes the MCA to create the focal ischemia. If MRI is not available, pups may be euthanized before reperfusion for dissection to visualize the placement of the suture. Adjust the suture length as needed. The pup weight highly correlates with the occluding suture length requirements. The occlusion time can be modified to adjust the degree of injury severity.
In addition, suture shape and length are critical. For P10 Sprague-Dawley and Long Evans rats weighing 19-21 g, 10 mm is the optimal length of insertion in our experience. Further insertion of the occluding suture may result in perforation of the MCA. Furthermore, the consistency in the shape of the occluding filament in each surgery will result in an increased consistency of injury pattern19,20. For this reason, we recommended using professionally-manufactured sutures for this specific purpose. It is also important to note that the injury pattern may differ between practitioners due to seemingly minute differences in technique.
Limitations of the technique
Performing this technique in a small, developing rodent requires significant experience. If performed correctly, the surgeon is able to cause a very consistent injury pattern across animals of different sizes and attain a survival rate greater than 95%. Furthermore, proper surgical tools are essential. Surgical instruments must be well maintained to ensure that all instrument tips approximate properly.
Significance of this technique with respect to existing or alternative methods
While hypoxia-ischemia, or the Rice-Vannucci model2, is most commonly used to study hypoxic-ischemic injury in the developing brain, it is important to note that this model of tMCAO is distinct from HI in that there is transient focal ischemia without global hypoxia, followed by a reperfusion phase when the obstruction is removed and blood flow is restored. This causes a more consistent and reproducible injury and is more clinically translational by causing an injury pattern similar to that seen in full-term neonatal stroke. This enables the study of focal injury patterns and compensatory responses in uninjured tissue.
Future applications after mastering this technique
This model is similar to the most common cause of stroke in human neonates, a transient occlusive thrombus that occurs during the perinatal period11,21. The etiology is not entirely clear and is most likely multifactorial, but it is presumed in most cases to result from emboli passing from the placenta11. In addition, many newborns with presumed perinatal stroke often present with later seizure activity or subtle focal neurological exam abnormalities22. This makes the use of a consistent, translational injury model to identify mechanisms of injury progression and possible therapeutic strategies crucial.
The authors have nothing to disclose.
Funding was provided by the NIH K08 NS064094 and UCSF REAC grants. The authors would like to acknowledge Nikita Derguin, Zinalda Vexler, and Joel Faustino for their assistance in the development of this technique.
Isoflourane | Henry Schein | 50033 | anesthetic, at 3% |
Trinocular Surgioscope | World Precision Instruments | PSMT5N | |
Heating pad | Sunbeam | 000731-500-000 | low to medium setting |
IR Thermometer | Extech Instruments | 72-5270 | |
Retraction kit for small animals | Fine Science Tools | 18200-20 | |
CermaCut Scissors | Fine Science Tools | 14958-09 | |
Dumont #5SF Forceps | Fine Science Tools | 112522-00 | 2x |
Dumont #5/45 Forceps | Fine Science Tools | 11251-35 | 2x |
B-2 Micro Clamp | Fine Science Tools | 00398-02 | |
Forcepts for Clamp Application | Fine Science Tools | 00072-14 | |
Micro Vannas Scissors | Fine Science Tools | 15000-03 | 2mm cutting edge |
Occlusion Sutures | Doccol | 602123PK10 | 701712PK5Re |
Ruler | Fine Science Tools | ||
Hemostatic Agent | Avitene | DVL1010590 | |
6-0 Perma-Hand Silk Reverse CuttingSuture | Ethicon | 769G | |
Euthasol | Virbac | 710101 | 0.22 ml/kg |
Cotton Tipped Applicators | Henry Schein | 100-9249 | |
Laboratory Tape | VWR | 89097-990 |