Summary

在活动视频游戏会话期间,从脑瘫青年的 ECG 数据计算心率变异性

Published: June 05, 2019
doi:

Summary

该协议描述了一种从心电图(ECG)波形计算心率变异性(HRV)的方法。在活动视频游戏 (AVG) 会话期间,连续心率 (HR) 记录产生的波形用于测量脑瘫青年 (CP) 的有氧表现。

Abstract

本研究的目的是从心电图(ECG)波形中生成一种计算心率变异性(HRV)的方法。参与者(脑瘫青年(CP))在活动视频游戏(AVG)会话期间佩戴的HR监视器记录了波形。AVG 课程旨在促进参与者的体育活动和健身(有氧表演)。目标是评估AvGs作为物理治疗(PT)干预策略的可行性。为每个参与者确定了最大 HR (mHR),在 20 分钟的 AVG 会话中,针对三个锻炼阶段中的每一个计算目标心率区 (THRZ):(在 40-60% mHR 下预热,在 60-80% mHR 调节,在 40-60% mHR 下冷却)。在AVG会话期间,每个参与者玩了三个20分钟的游戏。所有比赛都是坐在板凳上进行的,因为许多有CP的青年不能长时间站立。每个游戏条件不同,参与者只使用手图标,手和脚图标在一起,或脚图标只收集对象。游戏的目标(称为 KOLLECT)是收集对象来获得积分,并避免不失分的危险。在预热和冷却阶段使用危险,只能促进更慢、可控的运动,以保持目标心率区 (THRZ) 中的 HR。在调理阶段没有危险,以促进更高水平的和更剧烈的体力活动。使用分析方法从ECG数据生成HRV(选定的时域和频域测量),以检查有氧工作负载。HRV最近的应用表明,短期测量(5分钟)是适当的,HRV生物反馈可能有助于改善各种健康状况的症状和生活质量。虽然 HR 是一种公认的临床测量,用于检查 PT 干预中的有氧运动表现和强度,但 HRV 可能在 AVG 会话期间提供自主系统功能、恢复和适应的信息。

Introduction

脑瘫(CP)是儿童期最常见的身体残疾。CP是由神经性侮辱对发育的大脑造成的,与运动损伤有关,如肌肉无力、痉挛、去功能减退、运动控制和平衡下降2,3。CP 是一种非渐进性疾病,但随着年龄的增长,儿童与具有典型发育 (TD) 的同龄人相比,身体活动较少,久坐不动,这主要是因为他们受损的神经肌肉和肌肉骨骼系统4.

患有CP的青少年通常接受物理治疗(PT)服务,以提高功能流动性,促进身体活动和健身(如有氧和肌肉耐力)2。通常,获得 PT 服务和社区资源的机会有限,以实现和维持这些 PT 目标5、6 。主动视频游戏(AVG)可能是一个可行的策略,在临床,家庭或社区设置7,8基于活动的PT干预。商业APG在适应游戏游戏和满足CP9青少年的特定需求和PT目标的灵活性有限。然而,定制的AvG提供灵活的游戏参数,挑战青少年与CP,同时促进体育活动和健身10。

我们的团队开发了定制的AVG(称为KOLLECT),用于检查青少年运动反应(例如,体育活动和有氧健身)。游戏使用运动传感器来跟踪游戏期间的青年运动。游戏的目标是”收集”尽可能多的对象,以取得高分,并避免危险,避免失去分数。对象可以收集手和/或脚图标由治疗师在灵活的游戏参数确定。

设计基于活动的PT干预,通过身体活动强度促进有氧健身,对于CP11的青少年至关重要。自定义APG可能是一个有效的策略,剂量强度和青年参与体育活动,以促进健身10。心率 (HR) 监测器通常用于临床 PT 实践,以确定有氧运动表现和活动强度。因此,HR监测器将帮助确定AvG在给给体力活动强度方面的可行性,以促进有氧健身9。从 HR 监视器生成的心电图数据可用于计算心率变异性 (HRV)。使用分析方法从心电图数据生成HRV,以检查有氧工作量。HRV最近的应用表明,短期测量(5分钟)是适当的,HRV生物反馈可能有助于改善各种健康状况的症状和生活质量32、33、34.应用短期HRV措施是评估AVG会议期间心血管功能的适当手段。鉴于 HRV 派生自 ECG 的 R-R 间隔,我们使用选定的时域和频域度量。HRV 的时域测量量化了连续心跳之间的连续间隔中的变异性量。我们使用 AVNN(平均 NN 间隔)、RMSSD(连续差的根均平方)、SDNN(NN 间隔的标准偏差)、NN50(NN 间隔数 >50 ms)和 PNN50(NN 间隔的百分比)。频域测量估计绝对功率或相对功率分布为可能四个频段,我们专门针对两个频段,低频(LF)功率和高频(HF)功率以及LF/HF比。虽然HR是一个公认的临床措施,HRV可能是有用的,因为它提供了有关自主系统功能,恢复,适应的信息,并提供AVG会议28期间的有氧工作量的估计。

本研究的目的是研究使用AVG策略促进体育活动和健身的可行性。第二个目的是介绍AVG数据收集协议和通过HR监视器获得的ECG数据计算HRV的方法。这些措施和该协议可能证明与临床医生监测和剂量PT干预会议相关。

Protocol

机构审查委员会获得批准。所有青年提供书面同意,父母在参与前表示同意。 1. AVG数据收集会议 AVG 游戏会话 在这项研究中,让CP的青年参加由三个20分钟游戏组成的AVG课程。见青年人口统计表5。预计将总共进行30场比赛;然而,29场比赛已经完成,因为一个主题只打了2场比赛在他的AVG会话。 让受试者在整个课程期间佩戴 HR 监视器,以记录 HR 和 ECG 响应。 ?…

Representative Results

该方法提供数据,用于分析新开发的方法对受试者心率可变性 (HRV) 的影响。它通过定位主体心电图数据的QRS波形的R部分(如图6所示)和计算其各种HRV值来达到这一点。如果 HR 监视器与主体进行适当接触,数据将一致,大大减少了更正的需要(如图4所示)。 阈值应设置为处理混乱和不规则?…

Discussion

10名患有CP的青年参加了这项研究(平均= SD)= 年龄(岁) = 15.53 ± 3.57;身高(厘米) 154.8 ± 12.6;体重(公斤) 50.69 ± 11.1;身体质量指数 (BMI) 50.46 ± 29.2;mHR 9 bpm = 186.8 ± 12.4°*有关患者人口统计数据,请参阅5。

使用 HR 监视器以及 HR 和 HRV 的相关措施需要考虑一些与修改和故障排除相关的措施。无论使用何种技术来获取数据,两个问题显而易见:1) 运动伪影和 2) 异位节拍。运动伪…

Disclosures

The authors have nothing to disclose.

Acknowledgements

作者感谢参与者及其家属为参与研究所花费的时间和精力。同样,作者还感谢刘一川博士和海山·阿亚兹博士协助进行HR监测的时间计算,保罗·迪芬巴赫博士负责开发KOLLECT主动视频游戏软件。这项工作的资金由库尔特基金会赠款#00006143(O’ Neil;迪芬巴赫,皮斯)和#00008819(奥尼尔;迪芬巴赫,皮斯)。

Materials

BioHarness Bluetooth Module (Electronics sensor)  Zephyr 9800.0189 Detects Heart Rate, Resiration Rate, Posture, and Skin Temperature.
BioHarness Chest Strap Zephyr 9600.0189, 9600.0190 Sizes Small XS-M, Large M-XL
BioHarness Charge Cradle & USB Cable Zephyr 9600.0257 Used to Transfer Data from the Module to a Computer for Analysis.
BioHarness Echo Gateway Zephyr 9600.0254 Allows for Realtime Viewing of Subject's Heart Rate.
MATLAB R2016a Mathworks 1.7.0_.60 Used for All Programming.

References

  1. Winter, S., Autry, A., Boyle, C., Yeargin-Allsopp, M. Trends in the prevalence of cerebral palsy in a population-based study. Pediatrics. 110 (6), 1220-1225 (2002).
  2. Fowler, E., et al. Promotion of physical fitness and prevention of secondary conditions for children with cerebral palsy: Section on Pediatrics Research Summit Proceedings. Physical Therapy. 87 (11), 1495-1510 (2007).
  3. Rosenbaum, P., Paneth, N., Leviton, A., Goldstein, M., Bax, M. A report: The definition and classification of cerebral palsy: April 2006. Developmental Medicine & Child Neurology. 49 (s109), 8-14 (2007).
  4. Hanna, S., et al. Stability and decline in gross motor function among children and youth with cerebral palsy aged 2 to 21 years. Developmental Medicine & Child Neurology. 51 (4), 295-302 (2009).
  5. Rimmer, J., Rowland, J. Health promotion for people with disabilities: Implications for empowering the person and promoting disability-friendly environments. American Journal of Lifestyle Medicine. 2 (5), 409-420 (2008).
  6. Feehan, K., et al. Factors influencing physical activity in children and youth with special health care needs: A pilot study. International Journal of Pediatrics. , (2012).
  7. Fehlings, D., Switzer, L., Findlay, B., Knights, S. Interactive computer play as motor therapy for individuals with cerebral palsy. Seminars in Pediatric Neurology. 20 (2), 127-138 (2013).
  8. Sandlund, M., Dock, K., Hager, C., Waterworth, E. Motion interactive video games in home training for children with cerebral palsy: parents’ perceptions. Disability & Rehabilitation. 34 (11), 925-933 (2012).
  9. Howcroft, J., et al. Active video game play in children with cerebral palsy: Potential for physical activity promotion and rehabilitation therapies. Archives of Physical Medicine and Rehabilitation. 93 (8), 1448-1456 (2012).
  10. Bilde, P., Kliim-Due, M., Rasmussen, B., Petersen, L., Petersen, T., Nielsen, J. Individualized, home-based interactive training of cerebral palsy children delivered through the Internet. BMC Neurology. 11, 32 (2011).
  11. Kolobe, T., et al. Research Summitt III proceedings on dosing in children with an injured brain or cerebral palsy. Physical Therapy. 94 (7), 907-920 (2014).
  12. Schipke, J., Pelzer, M., Arnold, G. Effect of respiration rate on short-term heart rate variability. Journal of Clinical and Basic Cardiology. 2 (1), 92-95 (1999).
  13. Ernst, G. Heart rate variability. Heart Rate Variability. , 1-336 (2014).
  14. Francis, J., et al. Association between symptoms of depression and anxiety with heart rate variability in patients with implantable cardioverter defibrillators. Psychosomatic Medicine. 71 (8), 821-827 (2009).
  15. Mendes, R., et al. Is applying the same exercise-based inpatient program to normal and reduced left ventricular function patients the best strategy after coronary surgery? A focus on autonomic cardiac response. Disability and Rehabilitation: An International Multidisciplinary Journal. 36 (2), 155-162 (2014).
  16. Muralikrishnan, K., Balakrishnan, B., Balasubramanian, K., Visnegarawla, F. Measurement of the effect of Isha Yoga on cardiac autonomic nervous system using short-term heart rate variability. Journal of Ayurveda and Integrative Medicine. 33 (2), 279-283 (2012).
  17. Yadav, R. K., Gupta, R., Deepak, K. K. A pilot study on short term heart rate variability & its correlation with disease activity in Indian patients with rheumatoid arthritis. Indian Journal of Medical Research. 136 (4), 593-598 (2012).
  18. Thuraisingham, R. A. Preprocessing RR interval time series for heart rate variability analysis and estimates of standard deviation of RR intervals. Computer Methods and Programs in Biomedicine. 83 (1), 78-82 (2006).
  19. Alamili, M., Rosenberg, J., Gögenur, I. Day-night variation in heart rate variability changes induced by endotoxaemia in healthy volunteers. Acta Anaesthesiologica Scandinavica. 59 (4), 457-464 (2015).
  20. Pal, G., et al. Preference for salt contributes to sympathovagal imbalance in the genesis of prehypertension. European Journal of Clinical Nutrition. 67 (6), 586-591 (2013).
  21. Telles, S., Raghavendra, B. R., Naveen, K. V., Manjunath, N. K., Kumar, S., Subramanya, P. Changes in autonomic variables following two meditative states described in yoga texts. Journal of Alternative and Complementary Medicine. 19 (1), 35-42 (2013).
  22. Kičmerová, D. . Methods for Detection and Classification in ECG Analysis. Doctoral thesis. , (2009).
  23. Murai, K., Hayashi, Y. Evaluation of mental workload for ship handling using physiological indices. , 604-608 (2009).
  24. Taelman, J., Vandeput, S., Spaepen, A., Van Huffel, S. Influence of mental stress on heart rate and heart rate variability. Heart. 29 (1), 1366-1369 (2009).
  25. Durantin, G., Gagnon, J. F., Tremblay, S., Dehais, F. Using near infrared spectroscopy and heart rate variability to detect mental overload. Behavioural Brain Research. 259, 16-23 (2014).
  26. Buchheit, M. Monitoring training status with HR measures: Do all roads lead to Rome?. Frontiers in Physiology. 5, (2014).
  27. Achten, J., Jeukendrup, A. Heart rate monitoring: Applications and limitations. Sports Medicine. 33 (8), 517-538 (2012).
  28. Amichai, T., Katz-Leurer, M. Heart rate variability with cerebral palsy: Review of literature and meta-analysis. NeuroRehabilitation. 35, 113-122 (2014).
  29. Billman, G., Haikuri, H., Sacha, J., Trimmel, K. An introduction to heart rate variability: Methodological considerations and clinical applications. Frontiers in Physiology. 6, (2015).
  30. Beffara, B., Bret, A., Vermeulen, N., Mermillod, M. Resting high frequency heart rate variability selectively predicts cooperative behavior. Physiology & Behavior. 164, 417-428 (2016).
  31. Fogt, D., Cooper, P., Freeman, C., Kalns, J., Cooke, W. Heart rate variability to assess combat readiness. Military Medicine. 174, 491-495 (2009).
  32. Kerppers, I. L., Arisawa, E. A. L., Oliveira, L. V. F., Sarmpaio, L. M. M., Oliverira, C. S. Heart rate variability in individual with cerebral palsy. Archives of Medical Science. 5, 45-50 (2009).
  33. Giggins, O. M., Persson, U. M., Caulfield, B. Biofeedback in Rehabilitation. Journal of Neuroengineering and Rehabilitation. 10, (2013).
  34. Shaffer, F., Ginsberg, J. P. An overview of heart rate variability metrics and norms. Frontiers in Public Health. 5, 258 (2017).
  35. Shaffer, F., McCarty, R., Zeir, C. L. A healthy heart is not a metronome: an integrative review of the heart’s anatomy and heart rate variability. Frontiers in Psychology. 5, 1040 (2014).

Play Video

Cite This Article
Landis, C., O’Neil, M. E., Finnegan, A., Shewokis, P. A. Calculating Heart Rate Variability from ECG Data from Youth with Cerebral Palsy During Active Video Game Sessions. J. Vis. Exp. (148), e59230, doi:10.3791/59230 (2019).

View Video