Summary

Magnetisk resonansbilleddannelse af multipel sklerose ved 7.0 Tesla

Published: February 19, 2021
doi:

Summary

Her præsenterer vi en protokol til at erhverve magnetisk resonans (MR) billeder af multipel sklerose (MS) patient hjerner på 7,0 Tesla. Protokollen omfatter forberedelse af opsætningen, herunder radiofrekvensspoler, standardiserede interviewprocedurer med MS-patienter, emnepositionering i MR-scanneren og MR-dataindsamling.

Abstract

Det overordnede mål med denne artikel er at demonstrere en state-of-the-art ultrahøj felt (UHF) magnetisk resonans (MR) protokol af hjernen på 7,0 Tesla i multipel sklerose (MS) patienter. MS er en kronisk inflammatorisk, demyelitning, neurodegenerativ sygdom, der er karakteriseret ved hvide og grå stoflæsioner. Påvisning af rumligt ogtidsmæssigt formidlede T 2-hyperintense læsioner ved brug af MR ved 1,5 T og 3 T repræsenterer et afgørende diagnostisk værktøj i klinisk praksis til at etablere nøjagtig diagnose af MS baseret på den nuværende version af McDonald-kriterierne fra 2017. Differentieringen af MS læsioner fra hjernen hvide stof læsioner af anden oprindelse kan undertiden være udfordrende på grund af deres ligner morfologi ved lavere magnetfelt styrker (typisk 3 T). Ultrahøj felt MR (UHF-MR) nyder godt af øget signal-til-støj-forhold og forbedret rumlig opløsning, både nøglen til overlegen billeddannelse for mere præcise og endelige diagnoser af subtile læsioner. Derfor har MR-scanning ved 7.0 T vist opmuntrende resultater for at overvinde udfordringerne ved MS differentialdiagnose ved at levere MS-specifikke neuroimaging markører (f.eks central vene tegn, hypointense fælg strukturer og differentiering af MS grå stof læsioner). Disse markører og andre kan identificeres ved andre MR-kontraster end T1 og T2 (T2*, fase, diffusion) og væsentligt forbedre differentiering af MS læsioner fra dem, der forekommer i andre neuroinflammatoriske tilstande såsom neuromyelitis optica og Susac syndrom. I denne artikel beskriver vi vores nuværende tekniske tilgang til undersøgelse cerebral hvid og grå stof læsioner hos MS patienter på 7,0 T ved hjælp af forskellige MR erhvervelsesmetoder. Den opdaterede protokol omfatter udarbejdelse af MR-opsætningen, herunder radiofrekvensspoler, der er tilpasset UHF-MR, standardiserede screenings-, sikkerheds- og interviewprocedurer med MS-patienter, patientpositionering i MR-scanneren og erhvervelse af dedikerede hjernescanninger, der er skræddersyet til undersøgelse af MS.

Introduction

Multipel sklerose (MS) er den mest almindelige kroniske inflammatoriske og demyelilinerende sygdom i centralnervesystemet (CNS), der forårsager udtalt neurologisk handicap hos yngre voksne og fører til langvarig handicap1,2. Det patologiske kendetegn ved MS er ophobningen af demyelinerende læsioner, der forekommer i hjernens grå og hvide stof og også diffus neurodegeneration i hele hjernen, selv i normalt forekommende hvidt stof (NAWM)3,4. MS patologi tyder på, at betændelse driver vævsskade på alle stadier af sygdommen, selv i de progressive stadier af sygdommen5. De første kliniske manifestationer af MS ledsages almindeligvis af reversible episoder af neurologiske underskud og omtales som et klinisk isoleret syndrom (CIS), når det kun tyder på MS6,7. I mangel af en klar SNG bør der udvises forsigtighed ved at stille en MS-diagnose: Diagnosen skal bekræftes ved opfølgning, og indledning af langsigtede sygdomsmodificerende behandlinger bør udskydes, indtil yderligere beviser8.

Magnetisk resonansbilleddannelse (MRI) er et uundværligt værktøj til diagnosticering af MS og overvågning af sygdomsprogression9,10,11. MR ved magnetfelt styrker på 1,5 T og 3 T repræsenterer i øjeblikket et afgørende diagnostisk værktøj i klinisk praksis til at opdage spin-spin afslapning tid vægtet (T2)hyperintense læsioner og etablere præcis diagnose af MS baseret på den nuværende version af 2017 McDonald kriterier8. Diagnostiske kriterier for MS understreger behovet for at påvise udbredelse af læsioner i tid og rum og for at udelukke alternative diagnoser8,12. Kontrastforstærket MR er den eneste metode til vurdering af akut sygdom og akut inflammation8, men stigende bekymringer vedrørende potentiel langsigtet gadoliniumhjerneaflejring kan potentielt begrænse kontrastapplikationen som et vigtigt diagnostisk værktøj13,14,17. Derudover kan differentiering af MS læsioner fra hjernen hvide stof læsioner af anden oprindelse undertiden være udfordrende på grund af deres ligner morfologi ved lavere magnetfelt styrker.

Mens MR er helt sikkert det bedste diagnostiske værktøj for MS-patienter, MR undersøgelser og protokoller bør følge retningslinjerne for Magnetic Resonance Imaging i MS gruppe (MAGNIMS) i Europa18,19 eller konsortiet af multipel sklerose Centers (CMSC) i Nordamerika20 for diagnosticering, prognose og overvågning af MS patienter. Standardiserede kvalitetskontrolundersøgelser i overensstemmelse med de seneste retningslinjer på tværs af forskellige hospitaler og lande er også afgørende21.

MR-protokoller skræddersyet til MS diagnose og sygdom progression overvågning omfatter flere MR-kontraster, herunder kontrast styret af langsgående afslapning tid T1, spin-spin afslapning tid T2, den effektive spin-spin afslapning tid T2*, og diffusion vægtet billeddannelse (DWI)22. Harmoniseringsinitiativerne indeholdt konsensusrapporter for MRI i medlemsstaterne for at bevæge sig i retning af standardiserede protokoller , der letter klinisk oversættelse og sammenligning af data på tværs af websteder23,24,25. T2-vægtet billeddannelse er veletableret og anvendes ofte i klinisk praksis til identifikation af hvide stof (WM) læsioner, som er karakteriseret ved hyperintense udseende26,27. Wm-læsionbelastningen er et vigtigt diagnostisk kriterium for MS28, men korrelerer kun svagt med klinisk handicap på grund af dets manglende specificitet for læsionens sværhedsgrad og den underliggende patofysiologi26,27,29. Denne observation har udløst udforskninger i parametrisk kortlægning af den tværgående afslapningstid T2 30. T2*-vægtet billeddannelse er blevet stadig vigtigere i billeddannelse MS. Det centrale veneskilt i T2* vægtet MR anses for at være en specifik billedmarkør for MS-læsioner27,31,32,33. T2* er følsom over for jernaflejring34,35, som kan vedrøre sygdomsvarighed, aktivitet og sværhedsgrad36,37,38. T2* blev også rapporteret til at afspejle ændringer i hjernevæv hos patienter med mindre underskud og tidlig MS og kan derfor blive et redskab til at vurdere udviklingen af MS allerede på et tidligt stadium39,40.

Forbedringer i MR-teknologi lover bedre at identificere ændringer i CNS af MS-patienter og give klinikere en bedre guide til at øge nøjagtigheden og hastigheden af en MS diagnose11. Ultrahøjt felt (UHF, B0≥7.0 T) MR-scanning nyder godt af en stigning i signal-til-støj-forholdet (SNR), der kan investeres i forbedrede rumlige eller tidsmæssige opløsninger, begge nøglen til overlegen billeddannelse for mere præcise og endelige diagnoser41,42. Transmissionsfelt (B1+) inhomogeneiteter, der er en negativ egenskab ved den 1H-radiofrekvens, der anvendes ved ultrahøje magnetfelter43, ville drage fordel af multikanaltransmission ved hjælp af parallelle transmissionsspoler (pTx) RF-spoler og RF-pulsdesigntilgange, der forbedrer B1+ homogenitet og dermed letter ensartet dækning af hjernen44.

Med fremkomsten af 7,0 T MR har vi opnået mere indsigt i demyelinerende sygdomme som MS med hensyn til øget følsomhed og specificitet af læsiondetektering, identifikation af central veneskilt, leptomeningeal ekstraudstyr og endda med hensyn til metaboliske ændringer45. MS læsioner har længe været vist fra histopatologiske undersøgelser til at danne omkring vener og venule46. Den perivenøse fordeling af læsioner (central vene tegn) kan identificeres med T2* vægtet MRI46,47,48 ved 3,0 T eller 1,5 T, men kan bedst identificeres med UHF-MR ved 7,0 T49,50,51,52. Bortset fra det centrale venetegn har UHF-MR ved 7,0 T forbedret eller afdækket MS-specifikke markører som hypunktensekantstrukturer og differentiering af MS gråstoflæsioner53,54,55,56. En bedre afgrænsning af disse markører med UHF-MR lover at overvinde nogle af udfordringerne ved at differentiere MS læsioner fra dem, der forekommer i andre neuroinflammatoriske tilstande såsom Susac syndrom53 og neuromyelitis optica54, samtidig med at der identificeres almindelige patogenetiske mekanismer under andre forhold eller varianter af MS som Balós koncentriske sklerose57,58.

I erkendelse af uhf-MRI’s udfordringer og muligheder for påvisning og differentiering af MS-læsioner beskriver denne artikel vores nuværende tekniske tilgang til at studere cerebrale hvide og grå stoflæsioner hos MS-patienter ved 7.0 T ved hjælp af forskellige billedteknikker. Den opdaterede protokol omfatter udarbejdelse af MR-opsætningen, herunder radiofrekvens (RF) spoler skræddersyet til UHF-MR, standardiseret screening, sikkerhed og interview procedurer med MS patienter, patient positionering i MR-scanneren og erhvervelse af hjernescanninger dedikeret til MS. Artiklen er beregnet til at guide billeddiagnostiske eksperter, grundlæggende forskere, kliniske forskere, translationelle forskere og teknologer med alle niveauer af erfaring og ekspertise lige fra praktikanter til avancerede brugere og applikationer eksperter inden for UHF-MR-scanning i MS patienter, med det ultimative mål at synergistisk forbinder teknologiudvikling og klinisk anvendelse på tværs af disciplinære domæner.

Protocol

Denne protokol er til undersøgelser, der er godkendt af den etiske komité i Charité – Universitätsmedizin Berlin (godkendelsesnummer: EA1/222/17, 2018/01/08) og databeskyttelsesafdelingen og corporate governance i Charité – Universitätsmedizin Berlin. Der er indhentet informeret samtykke fra alle forsøgspersoner, inden de blev inkluderet i undersøgelsen. 1. Forsøgspersoner BEMÆRK: Rekruttering af MS-patienter finder normalt sted på få dage op til nogle uge…

Representative Results

En 26-årig kvinde diagnosticeret med tilbagefald remitterende MS (RRMS) blev undersøgt på 7,0 T ved hjælp af ovenstående protokoller (Figur 11). Nogle forvrængninger i B1+ profilen kan observeres i MR-billederne. Dette forventes, når man flytter til højere resonansfrekvenser43; de kortere bølgelængder øger destruktiv og konstruktiv interferens105,<sup class="x…

Discussion

Protokollen præsenteres her beskriver en række MR-scanninger med forskellige kontraster, der typisk anvendes ved undersøgelse ms patienter på 7,0 T. Sammen med nye teknologiske udviklinger, de giver grundlag for udforskninger i mere avancerede applikationer i metaboliske eller funktionelle billeddannelse.

Bortset fra hjernelæsioner påvirker læsioner i rygmarven ofte MS-patienter, der forårsager motorisk, sensorisk og autonom dysfunktion. Men rygmarvsscanning, især på 7,0 T, er teknis…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Dette projekt (T.N.) har delvist modtaget støtte fra Det Europæiske Forskningsråd (ERC) under EU’s Horisont 2020-forsknings- og innovationsprogram i henhold til tilskudsaftale nr. 743077 (ThermalMR). Forfatterne ønsker at takke holdene på Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine i Helmholtz Association, Berlin, Tyskland; på Sveriges nationale 7T-facilitet, Lund University Bioimaging Center, Lund Universitet, Lund, Sverige og på ECOTECH-COMPLEX, Maria Curie-Skłodowska University, Lublin, Polen for teknisk og anden bistand.

Materials

7T TX/RX 24 Ch Head Coil Nova Medical, Inc., Wilmington, USA NM008-24-7S-013 1-channel circular polarized (CP) transmit (Tx), 24-channel receive (Rx) RF head coil
Magnetom 7T System Siemens Healthineers, Erlangen, Germany MRB1076 7.0 T whole body research scanner
syngoMR B17 Software Siemens Healthineers, Erlangen, Germany B17A image processing software for the Magnetom 7T system

References

  1. Filippi, M., et al. Multiple sclerosis. Nature Reviews Disease Primers. 4 (1), 43 (2018).
  2. Krieger, S. C., Cook, K., De Nino, S., Fletcher, M. The topographical model of multiple sclerosis: A dynamic visualization of disease course. Neurology: Neuroimmunology & Neuroinflammation. 3 (5), 279 (2016).
  3. Kutzelnigg, A., et al. Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain. 128 (11), 2705-2712 (2005).
  4. Kuchling, J., Paul, F. Visualizing the Central Nervous System: Imaging Tools for Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorders. Frontiers in Neurology. 11, 450 (2020).
  5. Lassmann, H. Multiple Sclerosis Pathology. Cold Spring Harbor Perspectives in Medicine. 8 (3), (2018).
  6. Miller, D. H., Chard, D. T., Ciccarelli, O. Clinically isolated syndromes. The Lancet Neurology. 11 (2), 157-169 (2012).
  7. van der Vuurst de Vries, R. M., et al. Application of the 2017 Revised McDonald Criteria for Multiple Sclerosis to Patients With a Typical Clinically Isolated Syndrome. JAMA Neurologyogy. 75 (11), 1392-1398 (2018).
  8. Thompson, A. J., et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. The Lancet Neurology. 17 (2), 162-173 (2018).
  9. Filippi, M., Preziosa, P., Rocca, M. A. Multiple sclerosis. Handbook of Clinical Neurology. 135, 399-423 (2016).
  10. Rovira, A., de Stefano, N. MRI monitoring of spinal cord changes in patients with multiple sclerosis. Current Opinion in Neurology. 29 (4), 445-452 (2016).
  11. Filippi, M., et al. Assessment of lesions on magnetic resonance imaging in multiple sclerosis: practical guidelines. Brain. , (2019).
  12. Kuhle, J., et al. Conversion from clinically isolated syndrome to multiple sclerosis: a large multicentre study. Multiple Sclerosis Journal. 21 (8), 1013-1024 (2015).
  13. El-Khatib, A. H., et al. Gadolinium in human brain sections and colocalization with other elements. Neurology: Neuroimmunology & Neuroinflammation. 6 (1), 515 (2019).
  14. McDonald, R. J., et al. Intracranial Gadolinium Deposition after Contrast-enhanced MR Imaging. Radiology. 275 (3), 772-782 (2015).
  15. McDonald, R. J., et al. Gadolinium Deposition in Human Brain Tissues after Contrast-enhanced MR Imaging in Adult Patients without Intracranial Abnormalities. Radiology. 285 (2), 546-554 (2017).
  16. Schlemm, L., et al. Gadopentetate but not gadobutrol accumulates in the dentate nucleus of multiple sclerosis patients. Multiple Sclerosis. 23 (7), 963-972 (2017).
  17. Boyken, J., Niendorf, T., Flemming, B., Seeliger, E. Gadolinium Deposition in the Brain after Contrast-enhanced MRI: Are the Data Valid. Radiology. 288 (2), 630-632 (2018).
  18. Rovira, &. #. 1. 9. 2. ;. a. l., et al. MAGNIMS consensus guidelines on the use of MRI in multiple sclerosis-clinical implementation in the diagnostic process. Nature Reviews Neurology. 11, 471 (2015).
  19. Wattjes, M. P., et al. MAGNIMS consensus guidelines on the use of MRI in multiple sclerosis-establishing disease prognosis and monitoring patients. Nature Reviews Neurology. 11 (10), 597-606 (2015).
  20. Traboulsee, A., et al. Revised Recommendations of the Consortium of MS Centers Task Force for a Standardized MRI Protocol and Clinical Guidelines for the Diagnosis and Follow-Up of Multiple Sclerosis. American Journal of Neuroradiology. 37 (3), 394-401 (2016).
  21. Sąsiadek, M., et al. Recommendations of the Polish Medical Society of Radiology and the Polish Society of Neurology for the routinely used magnetic resonance imaging protocol in patients with multiple sclerosis. Polish Journal of Radiology. 85, 272-276 (2020).
  22. Maranzano, J., et al. Comparison of multiple sclerosis cortical lesion types detected by multicontrast 3T and 7T MRI. American Journal of Neuroradiology. 40 (7), 1162-1169 (2019).
  23. Arevalo, O., Riascos, R., Rabiei, P., Kamali, A., Nelson, F. Standardizing Magnetic Resonance Imaging Protocols, Requisitions, and Reports in Multiple Sclerosis: An Update for Radiologist Based on 2017 Magnetic Resonance Imaging in Multiple Sclerosis and 2018 Consortium of Multiple Sclerosis Centers Consensus Guidelines. Journal of Computer Assisted Tomography. 43 (1), 1-12 (2019).
  24. Schmierer, K., et al. Towards a standard MRI protocol for multiple sclerosis across the UK. The British Journal of Radiology. 92 (1101), 20180926 (2019).
  25. Pereira, D. J., et al. Consensus Recommendations of the Multiple Sclerosis Study Group and the Portuguese Neuroradiological Society for the Use of Magnetic Resonance Imaging in Multiple Sclerosis in Clinical Practice: Part 2. Acta Médica Portuguesa. 33 (1), 66-75 (2020).
  26. Zivadinov, R., Bakshi, R. Role of MRI in multiple sclerosis I: inflammation and lesions. Front Biosci. 9 (665), 28 (2004).
  27. Hemond, C. C., Bakshi, R. Magnetic resonance imaging in multiple sclerosis. Cold Spring Harbor Perspectives in Medicine. 8 (5), 028969 (2018).
  28. Thompson, A. J., et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. The Lancet Neurology. 17 (2), 162-173 (2018).
  29. Neema, M., et al. T1-and T2-based MRI measures of diffuse gray matter and white matter damage in patients with multiple sclerosis. Journal of Neuroimaging. 17, 16-21 (2007).
  30. Shepherd, T. M., et al. New rapid, accurate T(2) quantification detects pathology in normal-appearing brain regions of relapsing-remitting MS patients. NeuroImage. Clinical. 14 (2), 363-370 (2017).
  31. Tallantyre, E. C., et al. A comparison of 3T and 7T in the detection of small parenchymal veins within MS lesions. Investigative Radiology. 44 (9), 491-494 (2009).
  32. Geraldes, R., et al. The current role of MRI in differentiating multiple sclerosis from its imaging mimics. Nature Reviews Neurology. 14 (4), 199 (2018).
  33. Sinnecker, T., et al. Evaluation of the Central Vein Sign as a Diagnostic Imaging Biomarker in Multiple Sclerosis. JAMA Neurology. 76 (12), 1446-1456 (2019).
  34. Bagnato, F., et al. Untangling the R2* contrast in multiple sclerosis: a combined MRI-histology study at 7.0 Tesla. Public Library of Science one. 13 (3), (2018).
  35. Walsh, A. J., et al. Multiple sclerosis: validation of MR imaging for quantification and detection of iron. Radiology. 267 (2), 531-542 (2013).
  36. Bozin, I., et al. Magnetic resonance phase alterations in multiple sclerosis patients with short and long disease duration. Public Library of Science one. 10 (7), 0128386 (2015).
  37. Ropele, S., et al. Determinants of iron accumulation in deep grey matter of multiple sclerosis patients. Multiple Sclerosis Journal. 20 (13), 1692-1698 (2014).
  38. Walsh, A. J., et al. Longitudinal MR imaging of iron in multiple sclerosis: an imaging marker of disease. Radiology. 270 (1), 186-196 (2014).
  39. Blazejewska, A. I., et al. Increase in the iron content of the substantia nigra and red nucleus in multiple sclerosis and clinically isolated syndrome: a 7 Tesla MRI study. Journal of Magnetic Resonance Imaging. 41 (4), 1065-1070 (2015).
  40. Bonnier, G., et al. Advanced MRI unravels the nature of tissue alterations in early multiple sclerosis. Annals of Clinical and Translational Neurology. 1 (6), 423-432 (2014).
  41. Niendorf, T., Barth, M., Kober, F., Trattnig, S. From ultrahigh to extreme field magnetic resonance: where physics, biology and medicine meet. MAGMA. 29 (3), 309-311 (2016).
  42. Sinnecker, T., et al. Ultrahigh field MRI in clinical neuroimmunology: a potential contribution to improved diagnostics and personalised disease management. EPMA. 6 (1), 16 (2015).
  43. Vaughan, J. T., et al. 7T vs. 4T: RF power, homogeneity, and signal-to-noise comparison in head images. Magnetic Resonance in Medicine. 46 (1), 24-30 (2001).
  44. Padormo, F., Beqiri, A., Hajnal, J. V., Malik, S. J. Parallel transmission for ultrahigh-field imaging. NMR in Biomedicine. 29 (9), 1145-1161 (2016).
  45. Bruschi, N., Boffa, G., Inglese, M. Ultra-high-field 7-T MRI in multiple sclerosis and other demyelinating diseases: from pathology to clinical practice. European Radiology Experimental. 4 (1), 59 (2020).
  46. Sati, P., et al. The central vein sign and its clinical evaluation for the diagnosis of multiple sclerosis: a consensus statement from the North American Imaging in Multiple Sclerosis Cooperative. Nature Reviews Neurology. 12 (12), 714-722 (2016).
  47. Tan, I. L., et al. MR venography of multiple sclerosis. American Journal of Neuroradiology. 21 (6), 1039-1042 (2000).
  48. Maggi, P., et al. The formation of inflammatory demyelinated lesions in cerebral white matter. Annals of Neurology. 76 (4), 594-608 (2014).
  49. Tallantyre, E. C., et al. A comparison of 3T and 7T in the detection of small parenchymal veins within MS lesions. Investigative Radiology. 44 (9), 491-494 (2009).
  50. Filippi, M., et al. Assessment of lesions on magnetic resonance imaging in multiple sclerosis: practical guidelines. Brain. 142 (7), 1858-1875 (2019).
  51. Muller, K., et al. Detailing intra-lesional venous lumen shrinking in multiple sclerosis investigated by sFLAIR MRI at 7-T. Journal of Neurology. , (2014).
  52. Sinnecker, T., et al. Periventricular venous density in multiple sclerosis is inversely associated with T2 lesion count: a 7 Tesla MRI study. Multiple Sclerosis. 19 (3), 316-325 (2013).
  53. Wuerfel, J., et al. Lesion morphology at 7 Tesla MRI differentiates Susac syndrome from multiple sclerosis. Multiple Sclerosis. 18 (11), 1592-1599 (2012).
  54. Sinnecker, T., et al. Distinct lesion morphology at 7-T MRI differentiates neuromyelitis optica from multiple sclerosis. Neurology. 79 (7), 708-714 (2012).
  55. Kuchling, J., et al. Identical lesion morphology in primary progressive and relapsing-remitting MS–an ultrahigh field MRI study. Multiple Sclerosis. 20 (14), 1866-1871 (2014).
  56. Sinnecker, T., et al. Multiple sclerosis lesions and irreversible brain tissue damage: a comparative ultrahigh-field strength magnetic resonance imaging study. Archives of Neurology. 69 (6), 739-745 (2012).
  57. Behrens, J. R., et al. 7 Tesla MRI of Balo’s concentric sclerosis versus multiple sclerosis lesions. Annals of Clinical and Translational Neurology. 5 (8), 900-912 (2018).
  58. Blaabjerg, M., et al. Widespread inflammation in CLIPPERS syndrome indicated by autopsy and ultra-high-field 7T MRI. Neurology: Neuroimmunology & Neuroinflammation. 3 (3), 226 (2016).
  59. Noureddine, Y., et al. Experience with magnetic resonance imaging of human subjects with passive implants and tattoos at 7 T: a retrospective study. Magnetic Resonance Materials in Physics, Biology and Medicine. 28 (6), 577-590 (2015).
  60. Kraff, O., Quick, H. H. 7T: Physics, safety, and potential clinical applications. Journal of Magnetic Resonance Imaging. 46 (6), 1573-1589 (2017).
  61. Hoff, M. N., et al. Safety Considerations of 7-T MRI in Clinical Practice. Radiology. 292 (3), 509-518 (2019).
  62. Kraff, O., Quick, H. H. Sicherheit von Implantaten im Hochfeld- und Ultrahochfeld-MRT. Der Radiologe. 59 (10), 898-905 (2019).
  63. Fagan, A. J., et al. 7T MR Safety. Journal of Magnetic Resonance Imaging. , (2020).
  64. . MR Safety Guidance, Documents and Links: MR Safety Strategies to Help You Stay Current with MR Safety Standards Available from: https://www.ismrm.org/mr-safety-links/mr-safety-resources-page/ (2020)
  65. Versluis, M. J., et al. Subject tolerance of 7 T MRI examinations. Journal of Magnetic Resonance Imaging. 38 (3), 722-725 (2013).
  66. Theysohn, J. M., et al. Subjective acceptance of 7 Tesla MRI for human imaging. Magnetic Resonance Materials in Physics, Biology and Medicine. 21 (1-2), 63 (2008).
  67. Klix, S., et al. On the Subjective Acceptance during Cardiovascular Magnetic Resonance Imaging at 7.0 Tesla. PLoS One. 10 (1), 0117095 (2015).
  68. Rauschenberg, J., et al. Multicenter study of subjective acceptance during magnetic resonance imaging at 7 and 9.4 T. Investigative Radiology. 49 (5), 249-259 (2014).
  69. Zurawski, J., Lassmann, H., Bakshi, R. Use of Magnetic Resonance Imaging to Visualize Leptomeningeal Inflammation in Patients With Multiple Sclerosis: A Review. JAMA Neurologyogy. 74 (1), 100-109 (2017).
  70. Radue, E. -. W., et al. Correlation between brain volume loss and clinical and MRI outcomes in multiple sclerosis. Neurology. 84 (8), 784-793 (2015).
  71. Filippi, M., et al. A high-resolution three-dimensional T1-weighted gradient echo sequence improves the detection of disease activity in multiple sclerosis. Annals of Neurology. 40 (6), 901-907 (1996).
  72. Mugler, J. P., Brookeman, J. R. Three-dimensional magnetization-prepared rapid gradient-echo imaging (3D MP RAGE). Magnetic Resonance in Medicine. 15 (1), 152-157 (1990).
  73. Lindig, T., et al. Evaluation of multimodal segmentation based on 3D T1-, T2- and FLAIR-weighted images – the difficulty of choosing. NeuroImage. 170, 210-221 (2018).
  74. Nelson, F., Poonawalla, A., Hou, P., Wolinsky, J. S., Narayana, P. A. 3D MPRAGE improves classification of cortical lesions in multiple sclerosis. Multiple sclerosis. 14 (9), 1214-1219 (2008).
  75. Marques, J. P., et al. MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field. NeuroImage. 49 (2), 1271-1281 (2010).
  76. Kober, T., et al. MP2RAGE Multiple Sclerosis Magnetic Resonance Imaging at 3 T. Investigative Radiology. 47 (6), 346-352 (2012).
  77. Beck, E. S., et al. Improved Visualization of Cortical Lesions in Multiple Sclerosis Using 7T MP2RAGE. American Journal of Neuroradiology. 39 (3), 459-466 (2018).
  78. Bø, L., Vedeler, C. A., Nyland, H. I., Trapp, B. D., Mørk, S. J. Subpial Demyelination in the Cerebral Cortex of Multiple Sclerosis Patients. Journal of Neuropathology, Experimental Neurology. 62 (7), 723-732 (2003).
  79. Kilsdonk, I. D., et al. Increased cortical grey matter lesion detection in multiple sclerosis with 7 T MRI: a post-mortem verification study. Brain. 139 (5), 1472-1481 (2016).
  80. Absinta, M., et al. Gadolinium-based MRI characterization of leptomeningeal inflammation in multiple sclerosis. Neurology. 85 (1), 18-28 (2015).
  81. Titelbaum, D. S., et al. Leptomeningeal Enhancement on 3D-FLAIR MRI in Multiple Sclerosis: Systematic Observations in Clinical Practice. Journal of Neuroimaging. 30 (6), 917-929 (2020).
  82. Schmidt, P., et al. Automated segmentation of changes in FLAIR-hyperintense white matter lesions in multiple sclerosis on serial magnetic resonance imaging. NeuroImage: Clinical. 23, 101849 (2019).
  83. Coulette, S., et al. Diagnosis and Prediction of Relapses in Susac Syndrome: A New Use for MR Postcontrast FLAIR Leptomeningeal Enhancement. American Journal of Neuroradiology. 40 (7), 1184-1190 (2019).
  84. Cohen-Adad, J., et al. T2* mapping and B0 orientation-dependence at 7T reveal cyto- and myeloarchitecture organization of the human cortex. NeuroImage. 60 (2), 1006-1014 (2012).
  85. Louapre, C., et al. The association between intra- and juxta-cortical pathology and cognitive impairment in multiple sclerosis by quantitative T2* mapping at 7T MRI. NeuroImage: Clinical. 12, 879-886 (2016).
  86. Liu, S., et al. Susceptibility-weighted imaging: current status and future directions. NMR in Biomedicine. 30 (4), 3552 (2017).
  87. Haacke, E. M., Xu, Y., Cheng, Y. C., Reichenbach, J. R. Susceptibility weighted imaging (SWI). Magnetic Resonance in Medicine. 52 (3), 612-618 (2004).
  88. Haacke, E. M., et al. Characterizing iron deposition in multiple sclerosis lesions using susceptibility weighted imaging. Journal of Magnetic Resonance Imaging. 29 (3), 537-544 (2009).
  89. Pitt, D., et al. Imaging Cortical Lesions in Multiple Sclerosis With Ultra-High-Field Magnetic Resonance Imaging. Archives of Neurology. 67 (7), 812-818 (2010).
  90. Li, X., et al. Magnetic susceptibility contrast variations in multiple sclerosis lesions. Journal of Magnetic Resonance Imaging. 43 (2), 463-473 (2016).
  91. Dal-Bianco, A., et al. Slow expansion of multiple sclerosis iron rim lesions: pathology and 7 T magnetic resonance imaging. Acta Neuropathologica. 133 (1), 25-42 (2017).
  92. Sati, P. Diagnosis of multiple sclerosis through the lens of ultra-high-field MRI. Journal of Magnetic Resonance. 291, 101-109 (2018).
  93. Griswold, M. A., et al. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magnetic Resonance in Medicine. 47 (6), 1202-1210 (2002).
  94. Hammond, K. E., et al. Development of a robust method for generating 7.0 T multichannel phase images of the brain with application to normal volunteers and patients with neurological diseases. NeuroImage. 39 (4), 1682-1692 (2008).
  95. Haacke, E. M., et al. Quantitative susceptibility mapping: current status and future directions. Magnetic Resonance Imaging. 33 (1), 1-25 (2015).
  96. Langkammer, C., et al. Quantitative susceptibility mapping in multiple sclerosis. Radiology. 267 (2), 551-559 (2013).
  97. Eskreis-Winkler, S., et al. Multiple sclerosis lesion geometry in quantitative susceptibility mapping (QSM) and phase imaging. Journal of Magnetic Resonance Imaging. 42 (1), 224-229 (2015).
  98. Chawla, S., et al. Longitudinal study of multiple sclerosis lesions using ultra-high field (7T) multiparametric MR imaging. PLOS ONE. 13 (9), 0202918 (2018).
  99. Kolasinski, J., et al. A combined post-mortem magnetic resonance imaging and quantitative histological study of multiple sclerosis pathology. Brain. 135 (10), 2938-2951 (2012).
  100. De Santis, S., et al. Evidence of early microstructural white matter abnormalities in multiple sclerosis from multi-shell diffusion MRI. NeuroImage: Clinical. 22, 101699 (2019).
  101. Filippi, M., et al. Microstructural magnetic resonance imaging of cortical lesions in multiple sclerosis. Multiple Sclerosis. 19 (4), 418-426 (2013).
  102. Granberg, T., et al. In vivo characterization of cortical and white matter neuroaxonal pathology in early multiple sclerosis. Brain: a Journal of Neurology. 140 (11), 2912-2926 (2017).
  103. Holland, D., Kuperman, J. M., Dale, A. M. Efficient correction of inhomogeneous static magnetic field-induced distortion in Echo Planar Imaging. NeuroImage. 50 (1), 175-183 (2010).
  104. In, M. -. H., Posnansky, O., Beall, E. B., Lowe, M. J., Speck, O. Distortion correction in EPI using an extended PSF method with a reversed phase gradient approach. PloS one. 10 (2), 0116320 (2015).
  105. Van de Moortele, P. F., et al. B(1) destructive interferences and spatial phase patterns at 7 T with a head transceiver array coil. Magnetic Resonance in Medicine. 54 (6), 1503-1518 (2005).
  106. Collins, C. M., Liu, W., Schreiber, W., Yang, Q. X., Smith, M. B. Central brightening due to constructive interference with, without, and despite dielectric resonance. Journal of Magnetic Resonance Imaging. 21 (2), 192-196 (2005).
  107. Yang, Q. X., et al. Manipulation of image intensity distribution at 7.0 T: passive RF shimming and focusing with dielectric materials. Journal of Magnetic Resonance Imaging. 24 (1), 197-202 (2006).
  108. Teeuwisse, W. M., Brink, W. M., Webb, A. G. Quantitative assessment of the effects of high-permittivity pads in 7 Tesla MRI of the brain. Magnetic Resonance in Medicine. 67 (5), 1285-1293 (2012).
  109. van Gemert, J., Brink, W., Webb, A., Remis, R. High-permittivity pad design tool for 7T neuroimaging and 3T body imaging. Magnetic Resonance in Medicine. 81 (5), 3370-3378 (2019).
  110. Vaidya, M. V., et al. Improved detection of fMRI activation in the cerebellum at 7T with dielectric pads extending the imaging region of a commercial head coil. Journal of Magnetic Resonance Imaging. 48 (2), 431-440 (2018).
  111. Brink, W. M., vander Jagt, A. M., Versluis, M. J., Verbist, B. M., Webb, A. G. High permittivity dielectric pads improve high spatial resolution magnetic resonance imaging of the inner ear at 7 T. Investigative Radiology. 49 (5), 271-277 (2014).
  112. Lundkvist, M., et al. Characterization of anti-natalizumab antibodies in multiple sclerosis patients. Multiple Sclerosis. 19 (6), 757-764 (2013).
  113. Moccia, M., et al. Advances in spinal cord imaging in multiple sclerosis. Therapeutic Advances in Neurological Disorders. 12, 1756286419840593 (2019).
  114. Zhao, W., et al. Nineteen-channel receive array and four-channel transmit array coil for cervical spinal cord imaging at 7T. Magnetic Resonance in Medicine. 72 (1), 291-300 (2014).
  115. Sinnecker, T., et al. MRI phase changes in multiple sclerosis vs neuromyelitis optica lesions at 7T. Neurology: Neuroimmunology & Neuroinflammation. 3 (4), 259 (2016).
  116. Wenz, D., et al. Millimeter spatial resolution in vivo sodium MRI of the human eye at 7 T using a dedicated radiofrequency transceiver array. Magnetic Resonance in Medicine. 80 (2), 672-684 (2018).
  117. Huhn, K., Engelhorn, T., Linker, R. A., Nagel, A. M. Potential of Sodium MRI as a Biomarker for Neurodegeneration and Neuroinflammation in Multiple Sclerosis. Frontiers in Neurology. 10 (84), (2019).
  118. Bolo, N. R., et al. Brain Pharmacokinetics and Tissue Distribution In Vivo of Fluvoxamine and Fluoxetine by Fluorine Magnetic Resonance Spectroscopy. Neuropsychopharmacology. 23 (4), 428-438 (2000).
  119. Ji, Y., et al. Eight-channel transceiver RF coil array tailored for 1H/19F MR of the human knee and fluorinated drugs at 7.0 T. NMR in Biomedicine. 28 (6), 726-737 (2015).
  120. Starke, L., Pohlmann, A., Prinz, C., Niendorf, T., Waiczies, S. Performance of compressed sensing for fluorine-19 magnetic resonance imaging at low signal-to-noise ratio conditions. Magnetic Resonance in Medicine. , 1-17 (2019).

Play Video

Cite This Article
Waiczies, S., Els, A., Kuchling, J., Markenroth Bloch, K., Pankowska, A., Waiczies, H., Herrmann, C., Chien, C., Finke, C., Paul, F., Niendorf, T. Magnetic Resonance Imaging of Multiple Sclerosis at 7.0 Tesla. J. Vis. Exp. (168), e62142, doi:10.3791/62142 (2021).

View Video