JoVE Science Education
Biomedical Engineering
A subscription to JoVE is required to view this content.  Sign in or start your free trial.
JoVE Science Education Biomedical Engineering
Quantitative Strain Mapping of an Abdominal Aortic Aneurysm
  • 00:07Overview
  • 01:14Principles of Strain Mapping
  • 03:404D Ultrasound Set-up
  • 04:58Ultrasound Image Acquisition
  • 05:45Image Analysis
  • 07:30Results
  • 08:41Applications
  • 10:02Summary

腹部主动脉瘤的定量应变图谱

English

Share

Overview

资料来源:汉娜·塞布尔1, 阿尔文·苏普里阿特纳1, 约翰·博伊尔2克雷格·戈尔根1

1韦尔登生物医学工程学院,普渡大学,拉斐特,印第安纳州

2密苏里州圣路易斯华盛顿大学机械工程与材料科学

软组织(如血管、皮肤、肌腱和其他器官)的机械行为受到弹性蛋白和胶原蛋白组成的强烈影响,后者提供弹性和强度。这些蛋白质的纤维方向取决于软组织的类型,范围从单一的首选方向到复杂的网状网络,在病变组织中可能发生变化。因此,软组织在细胞和器官水平上经常具有同一性,因此需要三维表征。开发一种可靠地估计复杂生物组织或结构中的应变场的方法,对于机械地描述和理解疾病非常重要。应变表示软组织如何随时间相对变形,并且可以通过各种估计进行数学描述。

随着时间的推移获取图像数据,可以估计变形和应变。然而,所有医学成像方式都含有一定量的噪音,这增加了准确估计体内应变的难度。此处描述的技术通过使用直接变形估计 (DDE) 方法从体积图像数据中计算空间变化的 3D 应变场,从而成功地克服了这些问题。

目前的应变估计方法包括数字图像相关(DIC)和数字体积相关性。不幸的是,DIC只能准确地估计来自二维平面的应变,严重限制了该方法的应用。虽然有用,但 DIC 等 2D 方法很难在经历 3D 变形的区域量化应变。这是因为平面外运动会产生变形误差。数字体积相关性是一种更适用的方法,将初始体积数据划分为多个区域,并找到变形体积的最相似区域,从而减少平面外误差。然而,这种方法证明对噪声很敏感,需要对材料的机械性能进行假设。

此处演示的技术通过使用 DDE 方法消除了这些问题,从而在医学成像数据分析中非常有用。此外,它对于高应变或局部应变是健壮的。在这里,我们描述了门控、体积4D超声数据的采集、其转换为可分析格式,以及使用自定义 Matlab 代码来估计 3D 变形和相应的 Green-Lagrange 应变,该参数能够更好地描述大变形。绿拉格朗日应变张量在许多三维应变估计方法中实现,因为它允许从位移的最小平方拟合 (LSF) 计算F。下面的方程表示绿-拉格朗日应变张数,E,其中FI分别表示变形梯度和二阶标识张子。

Equation 1(1)

Principles

Procedure

1. 4D超声设置 使用成像软件时,使用能够运行数学计算软件的笔记本电脑自动执行 4D 采集过程。通过 USB 端口将具有此自定义代码的笔记本电脑连接到超声波系统。请注意,成像软件集成了 4D 超声功能。 打开超声波系统后,设置生理监测单元,同时确保心率和温度按钮打开。初始化连接到传感器支架的 3D 电机级。 使用适当的级和超声波传感器进行图像采集。确保已建立所…

Results

Using the procedure described above, 4D ultrasound of an angiotensin II-induced suprarenal dissecting abdominal aortic aneurysm (AAA) of a mouse was acquired. Multiple short-axis EKV video loops were acquired along the aorta and combined to create 4D data, as shown in Figure 1. This data was then converted into a MAT file using a custom code, which was then analyzed in a 3D strain calculation code using a warping function. After optimizing the parameters of the code for a specific data set, a representative, long-axis view with corresponding strain values was produced as well as a 3D slice visualization plot with an overlaid strain color map (Figure 2). This DDE technique and strain data highlight the heterogeneous spatial variations in strain, particularly when a thrombus is present. These results can then be correlated with vessel structure to determine the relationship between in vivo deformation and aneurysm composition.

Equation 3
Figure 1: ECG-gated kilohertz visualization (EKV) loops of the aorta are acquired from manually inputted starting and ending locations, following a step size of 0.2 mm.

Figure 1
Figure 2: 4D high frequency ultrasound data of a murine dissecting abdominal aortic aneurysm represented at systole (A) with principal strain fields estimated and overlaid (B) (Scalebar = 5 mm). Long- and short-axis views representing both aneurysmal and healthy regions corresponding principal strain over one cardiac cycle (systole: t= 0.4) (C, D). These data show relatively high strain levels in healthy regions and reduced strain values within the dissecting aneurysm.

Applications and Summary

Localized in vivo mechanical characterization is an important part of understanding the growth and remodeling of biological tissues. Compared to existing approaches, the strain quantification procedure described here uses an improved method of accurately calculating 3D strain through optimally warping the undeformed image before cross-correlation. This method does not use any material assumptions in determining strains within tissue volumes. Unfortunately, the strain estimation is reliable only down to a kernel size of 15x15x15 voxels when using ultrasound data, suggesting that this DDE approach may not detect subtle features within a strain field. Despite this limitation, it remains an important tool for investigating mechanical responses, diagnosing pathology, and improving disease models.

Many areas of research beyond aortic aneurysms can benefit from this strain measurement tool. Cardiac strain can also be easily quantified using this method. Because the myocardium undergoes 3D deformation during the cardiac cycle, quantifying strain in three dimensions is integral to reliably characterizing the dynamics of this tissue. Reliable strain data is especially important when tracking disease progression in animal models.

3D strain analysis can also be applied to intestinal ultrasound imaging. Mechanical characterization of intestinal tissue is most commonly conducted in vitro. However, this is not always a true representation of the actual behavior of the intestines in vivo because of effects from surrounding structures. As an example of clinically translating this approach, calculating the strain from images of intestinal fibrosis due to abnormal luminal pressure could provide early detection of problematic areas that require surgical intervention.

Beyond the larger scale applications, this method can also be applied to the cellular level by using higher resolution imaging techniques, such as confocal microscopy. Characterizing the extracellular matrix is important for understanding how cells communicate. Much research has been conducted on the biochemical characterization, but understanding how communication can be conducted through mechanical responses requires an understanding of deformation and strain. Bulk strain is not beneficial because there is no way to determine the origin of the deformation change. Applying a high-resolution DDE approach could directly reveal how the extracellular matrix responds to mechanical changes.

ACKNOWLEDGEMENTS

We would like to acknowledge John Boyle, Guy Genin, and Stavros Thomopoulos for the contribution of the DDE custom Matlab code capable of directly estimating Lagrange-Green strain.

Transcript

Three-dimensional strain imaging is used to estimate deformation of soft tissues over time and understand disease. The mechanical behavior of soft tissues, such as skin, blood vessels, tendons, and other organs, is strongly influenced by their extracellular composition, which can become altered from aging and disease. Within complex biological tissues, it is important to characterize these changes, which can significantly affect the mechanical and functional properties of an organ.

Quantitative strain mapping uses volumetric image data and a direct deformation estimation method to calculate the spatially varying three-dimensional strain fields. This video will illustrate the principles of strain mapping, demonstrate how quantitative strain mapping is used to estimate strain fields within complex biological tissues, and discuss other applications.

Biological tissues are strongly influenced by the composition and orientation of elastin and collagen. The protein elastin is a highly elastic component of tissues that continually stretch and contract, such as blood vessels and the lungs. Collagen is the most abundant protein in the body, and is assembled from individual triple-helical polymers that are bundled into larger fibers that provide structural integrity to tissues ranging from skin to bones.

The orientation of these proteins ranges from aligned fibers to fibrous mesh networks, which affects the mechanical properties of the tissue. Strain is a measure of the relative deformation of soft tissues over time, and can be used to visualize injury and disease. It is described and mapped using mathematical estimations.

To map strain in complex organs, such as the heart, four-dimensional ultrasound data, which provides high resolution, spatial, and temporal information, can be used. Then the direct deformation estimation method, or DDE, is applied to the data. A code is used to estimate the 3D deformation and corresponding Green-Lagrange strains using the following equation.

The Green-Lagrange strain tensor depends on the deformation gradient tensor and the second order identity tensor. Deformation gradient tensors are traditionally estimated from displacement fields. In the DDE method, a warping function is optimized to be directly analogous to the deformation tensor. The warping function depends on both spatial position and the warping parameter. The calculation of deformation is directly incorporated into the warping function. The first nine elements represent the deformation gradient tensor.

This method is used to estimate both large and localized deformations in soft tissues. Now that we understand the principles of strain mapping, let’s now see how strain mapping is performed to detect aortic aneurysms in mice.

To begin setup, open the Vivo 2100 software and connect the laptop to the ultrasound system. Make sure the physiological monitoring unit is on to measure heart rate and temperature. Then initialize the 3D motor stage.

Install the ultrasound transducer and ensure that all proper connections are made. Next, anesthetize the animal that will be imaged using 3% isoflurane in a knock-down chamber. Once the mouse is anesthetized, move it to the heated stage and secure a nose cone to deliver 1-2% isoflurane. Apply ophthalmic ointment to the eyes and secure the paws to the stage electrodes to monitor the animal’s respiration and heart rate. Then insert a rectal temperature probe. Apply depilatory cream to remove hair from the area of interest, and then apply a generous amount of warm ultrasound gel to the depilated area.

To start the image acquisition, first, open the imaging window and select B mode. Then lower the transducer onto the animal and use the x and y-axis knobs on the stage to locate the area of interest. Monitor the respiratory rate to make sure it does not decrease substantially. Position the transducer in the middle of the region of interest. Then approximate the distance required to cover the entire region of interest.

Enter these dimensions in the MATLAB code and choose a step size of 0.08 millimeters. Make sure the animal’s heart and respiratory rates are stable, then run the MATLAB code.

After image acquisition, export the data as raw XML files and convert them into MAT files. Make sure to input the number of frames, step size, and output resolution. Then re-sample the matrix in through-plane.

Import the new MAT file into the 3D strain analysis code. It may be necessary to rescale the file to reduce the computation time. Then, input the region to be analyzed. Approximate the number of pixels in a two-dimensional slice of the tracked feature and select the mesh template either as a simple box or manually chosen polygons. Choose the optimal pixel number for the mesh size. Compute the Jacobians and the gradients. Repeat for each region. Then apply the warping function.

Next, using Cartesian deformations calculated from DDE, determine the eigenvalues and eigenvectors of the deformation. Then, select the slices that you want to plot strain values for by scrolling through the long axis, sort axis, and coronal axis views.

Press Select Manifold for Analysis. Then use the cursor to place markers along the aortic wall, including the thrombus, aneurysm, and healthy parts of the aorta. Repeat for all views. Finally, use color mapping to plot the results of the strain field over the region of interest.

Let us have a close look at the example of an angiotensin II-induced suprarenal dissecting abdominal aortic aneurysm acquired from a mouse. First, multiple short axis ECG-gated kilohertz visualization loops are obtained at a given step size along the aorta and combined to create 4D data.

After performing 3D strain calculation using an optimized warping function, the 3D slice visualization plot of the infrarenal aorta is obtained. The color map of principal green strain is overlaid to highlight regions of heterogeneous aortic wall strain. In addition, long axis and short axis views reveal heterogeneous spatial variations in strain, particularly when a thrombus is present.

Corresponding strain plots show higher strain values in healthy regions of the aorta in the long axis, while the aneurysmal region shows decreased strain in the short axis.

Accurate quantitative strain visualization using direct deformation estimation is a useful tool used in various biomedical applications.

For instance, cardiac strain can be quantified. During the cardiac cycle, the myocardium undergoes 3D deformation. Quantifying strain in three dimensions is integral to reliably characterizing the dynamics of this tissue over time. This is useful in tracking disease progression in animal models.

Another application is in the characterization of intestinal tissue. In vivo imaging of the intestines is challenging because of the effects from surrounding structures. However, calculating strain from images of intestinal fibrosis could be particularly useful to provide early detection of problematic areas that require surgical intervention.

At a much smaller scale, this DDE method is also applied to the cellular level by using higher resolution imaging techniques such as confocal microscopy. It serves, for example, in the characterization of extracellular matrix to understand how cells communicate under mechanical changes.

You’ve just watched JoVE’s introduction to quantitative strain visualization. You should now understand how to measure three-dimensional strain in biological tissues and how that is used in early disease detection. Thanks for watching!

Tags

Cite This
JoVE Science Education Database. JoVE Science Education. Quantitative Strain Mapping of an Abdominal Aortic Aneurysm. JoVE, Cambridge, MA, (2023).