-1::1
Simple Hit Counter
Skip to content

Products

Solutions

×
×
Sign In

EN

EN - EnglishCN - 简体中文DE - DeutschES - EspañolKR - 한국어IT - ItalianoFR - FrançaisPT - Português do BrasilPL - PolskiHE - עִבְרִיתRU - РусскийJA - 日本語TR - TürkçeAR - العربية
Sign In Start Free Trial

RESEARCH

JoVE Journal

Peer reviewed scientific video journal

Behavior
Biochemistry
Bioengineering
Biology
Cancer Research
Chemistry
Developmental Biology
View All
JoVE Encyclopedia of Experiments

Video encyclopedia of advanced research methods

Biological Techniques
Biology
Cancer Research
Immunology
Neuroscience
Microbiology
JoVE Visualize

Visualizing science through experiment videos

EDUCATION

JoVE Core

Video textbooks for undergraduate courses

Analytical Chemistry
Anatomy and Physiology
Biology
Cell Biology
Chemistry
Civil Engineering
Electrical Engineering
View All
JoVE Science Education

Visual demonstrations of key scientific experiments

Advanced Biology
Basic Biology
Chemistry
View All
JoVE Lab Manual

Videos of experiments for undergraduate lab courses

Biology
Chemistry

BUSINESS

JoVE Business

Video textbooks for business education

Accounting
Finance
Macroeconomics
Marketing
Microeconomics

OTHERS

JoVE Quiz

Interactive video based quizzes for formative assessments

Authors

Teaching Faculty

Librarians

K12 Schools

Products

RESEARCH

JoVE Journal

Peer reviewed scientific video journal

JoVE Encyclopedia of Experiments

Video encyclopedia of advanced research methods

JoVE Visualize

Visualizing science through experiment videos

EDUCATION

JoVE Core

Video textbooks for undergraduates

JoVE Science Education

Visual demonstrations of key scientific experiments

JoVE Lab Manual

Videos of experiments for undergraduate lab courses

BUSINESS

JoVE Business

Video textbooks for business education

OTHERS

JoVE Quiz

Interactive video based quizzes for formative assessments

Solutions

Authors
Teaching Faculty
Librarians
K12 Schools

Language

English

EN

English

CN

简体中文

DE

Deutsch

ES

Español

KR

한국어

IT

Italiano

FR

Français

PT

Português do Brasil

PL

Polski

HE

עִבְרִית

RU

Русский

JA

日本語

TR

Türkçe

AR

العربية

    Menu

    JoVE Journal

    Behavior

    Biochemistry

    Bioengineering

    Biology

    Cancer Research

    Chemistry

    Developmental Biology

    Engineering

    Environment

    Genetics

    Immunology and Infection

    Medicine

    Neuroscience

    Menu

    JoVE Encyclopedia of Experiments

    Biological Techniques

    Biology

    Cancer Research

    Immunology

    Neuroscience

    Microbiology

    Menu

    JoVE Core

    Analytical Chemistry

    Anatomy and Physiology

    Biology

    Cell Biology

    Chemistry

    Civil Engineering

    Electrical Engineering

    Introduction to Psychology

    Mechanical Engineering

    Medical-Surgical Nursing

    View All

    Menu

    JoVE Science Education

    Advanced Biology

    Basic Biology

    Chemistry

    Clinical Skills

    Engineering

    Environmental Sciences

    Physics

    Psychology

    View All

    Menu

    JoVE Lab Manual

    Biology

    Chemistry

    Menu

    JoVE Business

    Accounting

    Finance

    Macroeconomics

    Marketing

    Microeconomics

Start Free Trial
Loading...
Home
JoVE Science Education
Psychology
An Introduction to Cognition
An Introduction to Cognition
JoVE Science Education
Behavioral Science
A subscription to JoVE is required to view this content.  Sign in or start your free trial.
JoVE Science Education Behavioral Science
An Introduction to Cognition

1: An Introduction to Cognition

23,346 Views
09:08 min
April 30, 2023

Overview

Cognition encompasses mental processes such as memory, perception, decision-making reasoning and language. Cognitive scientists are using a combination of behavioral and neuropsychological techniques to investigate the underlying neural substrates of cognition. They are interested in understanding how information is perceived, processed and how does it affect the final execution of behaviors. With this knowledge, researchers hope to develop new treatments for individuals with cognitive impairments.

JoVE's introduction to cognition reviews several components of this phenomenon, such as perception, attention, language comprehension, etc. Key questions in the field of cognition will be discussed along with specific methods currently being used to answer these questions. Finally, specific studies that investigate different aspects of cognition using tools like functional Magnetic Resonance Imaging (fMRI) or Transcranial magnetic stimulation (TMS) will be explained.

Procedure

Cognition is broadly defined as the mental processes associated with phenomena like attention, memory, reasoning, and language. Cognitive scientists are using a combination of psychological and physiological techniques to understand the biological underpinnings of cognition. Through this understanding, scientists hope to develop new ways of treating patients with cognitive impairments.

This video will first introduce several functional attributes of cognition. Then, we will discuss key questions in the field, as well as methods used to answer them. Finally, we will look at a few studies utilizing these techniques.

To begin, let's look at some of the individual aspects of the complex cognition phenomenon currently being studied by behavioral scientists.

Perception is the cognitive process of brain receiving, understanding, and making sense of sensory information. Beyond mere sensory input, our brains are able to perceive complex traits, such as objects, patterns, or faces. On the other hand, optical illusions demonstrate how the brain's processing of sensory information doesn't always reflect reality.

While your brain is constantly receiving perceptual information, attention is the cognitive phenomenon that allows for focusing of our perceptional resources. This ability to be "selectively" aware of certain stimuli while tuning out others is known as selective attention. More often, in your daily life your attention is divided: think driving in a car while talking on the phone.

Focused attention can result in improved storage and a greater ability to recall perceived information. This process is known as memory. In particular, cognitive experiments test working memory, which involves functions like storing information for a short-term, for example a person's phone number, and then processing of this transient information to accomplish a task, like contacting that person.

Another cognitive function that scientists are interested in studying is language comprehension and expression. It is interesting how we acquire the skill of understanding what we hear, and how we learn to talk, without any formal training. Studies have confirmed that two brain regions, Broca's area and Wernicke's area, are involved in language comprehension and speech production, and scientists are interested in revealing the mechanism behind developmental disorders leading to language deficits.

Lastly, we'll discuss executive function, which is a multi-faceted cognitive process. This phenomenon encompasses tasks like judgment, reasoning, problem solving, decision-making, and planning. Executive function is critical for organization and goal-directed behavior, and serves as a management system for the many other cognitive processes.

In conclusion, cognitive science is a vast field focused on studying the numerous mental processes that govern many of your day-to-day activities. Therefore, it is one of the most active areas of behavioral neuroscience research.

With this basic understanding of the cognition components, let's examine some key questions in the field.

At its most basic level, cognitive neuroscience attempts to determine the functional relationship between neurobiology and cognitive processes. One way to study this is by examining which areas of the brain are active during a particular cognitive test. Examining neural basis might help in developing new therapies for patients with cognitive disabilities.

It is believed that the cognitive abilities develop during early life stages, and ultimately degrades with age, and many researchers are interested in studying this transition. These studies include looking at how cognitive abilities are acquired as the brain develops from infancy through adulthood, as well as how aging-related neurodegeneration correlates with cognitive decline.

Another basic question is, what roles do our genes and environment play in cognition? Researchers interested in this question aim to understand the relative importance of genetics and surroundings on cognitive development. One of the types of studies, called "twin studies," involves observing identical twins that have been raised in different environments. By performing cognitive tests on these genetically identical individuals, researchers can study the role of environment on brain function.

After reviewing some key questions in the field, let's look at a few of the prominent techniques used by cognitive neuroscientists today.

One technique that is becoming increasingly common is functional brain imaging. Functional Magnetic Resonance Imaging, or fMRI, is a technique that measures changes in blood flow as a proxy for neural activity in the brain, which is specific for individual cognitive processes. Positron Emission Tomography, or PET, is a similar method that measures the uptake of a radioactive tracer to visualize brain activity. Electro- or magnetoencephalography, on the other hand, use sensors placed on the scalp to directly measure the electric or magnetic fields created by neuronal firing. Analyzing the readout shows which brain areas are active during specific cognitive tasks.

In addition to just observations, scientists attempt to modulate brain's activity in a targeted fashion to understand how it works. Transcranial Magnetic Stimulation, or TMS, uses electromagnetic induction to activate or suppress neuronal activity. This technique can be used to perturb specific brain regions in human subjects in a non-invasive manner and then study its effect on cognitive abilities.

Another important tool found in many cognitive experiments is eye tracking. Eye tracking is used to assess cognitive functions like attention, visual perception, and language processing. Eye tracking measurements can provide insight into the how we read, recognize faces, or selectively attend to objects while driving.

Finally, psychological methods of assessing specific cognitive functions are equally critical. A classic psychological test is called the Stroop task, which tests selective attention ability by asking the subject to identify either the written color name, which in this case is red, or the color in which it is displayed, which is blue. Another task called the Go or No-Go task, also examines attention and response control by analyzing the reaction time. This task requires discrimination between different elements, such as "Friend" or "Enemy" in a video game.

Now that you've looked at some of the current methods and tasks, let's see how they are being applied by scientists to study cognition.

Often, fMRI visualization of brain activity is combined with cognitive tests to localize functions to particular brain regions. Here, researchers have subjects perform a test of executive function called the dimensional card-sorting task inside the fMRI machine. This task requires participants to sort cards based on one characteristic, such as shape, and then switch to sorting them by a second characteristic, such as color. The measured brain activity can inform the identification of brain regions that play a role in executive functioning.

In another example, scientists use TMS to stimulate a specific brain region as a form of therapy in patients suffering from a language disorder called aphasia. First, researchers determined a patient's baseline language ability, followed by identifying the optimal site for stimulation. After repeated treatment sessions, the patient's language abilities were retested.

Finally, some scientists are looking at the impact of emotion on cognition. Here, researchers had subjects perform a working memory task, which involved showing them a memoranda consisting of three faces, followed by a delay interval during which emotional images were shown as a distractor. The subjects' recall of the initial face images was then assessed with fMRI.

You've just watched JoVE's introduction to cognitive neuroscience. This video covered various aspects of cognition, the central questions addressed in the field, prominent methods being used by researchers today, and finally current studies utilizing different techniques. As always, thanks for watching!

Transcript

Cognition is broadly defined as the mental processes associated with phenomena like attention, memory, reasoning, and language. Cognitive scientists are using a combination of psychological and physiological techniques to understand the biological underpinnings of cognition. Through this understanding, scientists hope to develop new ways of treating patients with cognitive impairments.

This video will first introduce several functional attributes of cognition. Then, we will discuss key questions in the field, as well as methods used to answer them. Finally, we will look at a few studies utilizing these techniques.

To begin, let's look at some of the individual aspects of the complex cognition phenomenon currently being studied by behavioral scientists.

Perception is the cognitive process of brain receiving, understanding, and making sense of sensory information. Beyond mere sensory input, our brains are able to perceive complex traits, such as objects, patterns, or faces. On the other hand, optical illusions demonstrate how the brain's processing of sensory information doesn't always reflect reality.

While your brain is constantly receiving perceptual information, attention is the cognitive phenomenon that allows for focusing of our perceptional resources. This ability to be "selectively" aware of certain stimuli while tuning out others is known as selective attention. More often, in your daily life your attention is divided: think driving in a car while talking on the phone.

Focused attention can result in improved storage and a greater ability to recall perceived information. This process is known as memory. In particular, cognitive experiments test working memory, which involves functions like storing information for a short-term, for example a person's phone number, and then processing of this transient information to accomplish a task, like contacting that person.

Another cognitive function that scientists are interested in studying is language comprehension and expression. It is interesting how we acquire the skill of understanding what we hear, and how we learn to talk, without any formal training. Studies have confirmed that two brain regions, Broca's area and Wernicke's area, are involved in language comprehension and speech production, and scientists are interested in revealing the mechanism behind developmental disorders leading to language deficits.

Lastly, we'll discuss executive function, which is a multi-faceted cognitive process. This phenomenon encompasses tasks like judgment, reasoning, problem solving, decision-making, and planning. Executive function is critical for organization and goal-directed behavior, and serves as a management system for the many other cognitive processes.

In conclusion, cognitive science is a vast field focused on studying the numerous mental processes that govern many of your day-to-day activities. Therefore, it is one of the most active areas of behavioral neuroscience research.

With this basic understanding of the cognition components, let's examine some key questions in the field.

At its most basic level, cognitive neuroscience attempts to determine the functional relationship between neurobiology and cognitive processes. One way to study this is by examining which areas of the brain are active during a particular cognitive test. Examining neural basis might help in developing new therapies for patients with cognitive disabilities.

It is believed that the cognitive abilities develop during early life stages, and ultimately degrades with age, and many researchers are interested in studying this transition. These studies include looking at how cognitive abilities are acquired as the brain develops from infancy through adulthood, as well as how aging-related neurodegeneration correlates with cognitive decline.

Another basic question is, what roles do our genes and environment play in cognition? Researchers interested in this question aim to understand the relative importance of genetics and surroundings on cognitive development. One of the types of studies, called "twin studies," involves observing identical twins that have been raised in different environments. By performing cognitive tests on these genetically identical individuals, researchers can study the role of environment on brain function.

After reviewing some key questions in the field, let's look at a few of the prominent techniques used by cognitive neuroscientists today.

One technique that is becoming increasingly common is functional brain imaging. Functional Magnetic Resonance Imaging, or fMRI, is a technique that measures changes in blood flow as a proxy for neural activity in the brain, which is specific for individual cognitive processes. Positron Emission Tomography, or PET, is a similar method that measures the uptake of a radioactive tracer to visualize brain activity. Electro- or magnetoencephalography, on the other hand, use sensors placed on the scalp to directly measure the electric or magnetic fields created by neuronal firing. Analyzing the readout shows which brain areas are active during specific cognitive tasks.

In addition to just observations, scientists attempt to modulate brain's activity in a targeted fashion to understand how it works. Transcranial Magnetic Stimulation, or TMS, uses electromagnetic induction to activate or suppress neuronal activity. This technique can be used to perturb specific brain regions in human subjects in a non-invasive manner and then study its effect on cognitive abilities.

Another important tool found in many cognitive experiments is eye tracking. Eye tracking is used to assess cognitive functions like attention, visual perception, and language processing. Eye tracking measurements can provide insight into the how we read, recognize faces, or selectively attend to objects while driving.

Finally, psychological methods of assessing specific cognitive functions are equally critical. A classic psychological test is called the Stroop task, which tests selective attention ability by asking the subject to identify either the written color name, which in this case is red, or the color in which it is displayed, which is blue. Another task called the Go or No-Go task, also examines attention and response control by analyzing the reaction time. This task requires discrimination between different elements, such as "Friend" or "Enemy" in a video game.

Now that you've looked at some of the current methods and tasks, let's see how they are being applied by scientists to study cognition.

Often, fMRI visualization of brain activity is combined with cognitive tests to localize functions to particular brain regions. Here, researchers have subjects perform a test of executive function called the dimensional card-sorting task inside the fMRI machine. This task requires participants to sort cards based on one characteristic, such as shape, and then switch to sorting them by a second characteristic, such as color. The measured brain activity can inform the identification of brain regions that play a role in executive functioning.

In another example, scientists use TMS to stimulate a specific brain region as a form of therapy in patients suffering from a language disorder called aphasia. First, researchers determined a patient's baseline language ability, followed by identifying the optimal site for stimulation. After repeated treatment sessions, the patient's language abilities were retested.

Finally, some scientists are looking at the impact of emotion on cognition. Here, researchers had subjects perform a working memory task, which involved showing them a memoranda consisting of three faces, followed by a delay interval during which emotional images were shown as a distractor. The subjects' recall of the initial face images was then assessed with fMRI.

You've just watched JoVE's introduction to cognitive neuroscience. This video covered various aspects of cognition, the central questions addressed in the field, prominent methods being used by researchers today, and finally current studies utilizing different techniques. As always, thanks for watching!

Explore More Videos

CognitionMental ProcessesAttentionMemoryReasoningLanguageCognitive ScientistsPsychological TechniquesPhysiological TechniquesCognitive ImpairmentsFunctional Attributes Of CognitionKey QuestionsMethods UsedPerceptionSensory InformationComplex TraitsObjectsPatternsFacesOptical IllusionsAttentionSelective Attention

Related Videos

An Introduction to Learning and Memory

10:06

An Introduction to Learning and Memory

Behavioral Science

75.0K Views

Fear Conditioning

06:46

Fear Conditioning

Behavioral Science

72.0K Views

Spatial Memory Testing Using Mazes

08:13

Spatial Memory Testing Using Mazes

Behavioral Science

63.6K Views

An Introduction to Cognition

09:08

An Introduction to Cognition

Behavioral Science

23.3K Views

Electro-encephalography (EEG)

09:19

Electro-encephalography (EEG)

Behavioral Science

48.0K Views

Eye Tracking in Cognitive Experiments

06:19

Eye Tracking in Cognitive Experiments

Behavioral Science

21.0K Views

An Introduction to Motor Control

08:45

An Introduction to Motor Control

Behavioral Science

20.1K Views

Balance and Coordination Testing

09:05

Balance and Coordination Testing

Behavioral Science

44.1K Views

Assessing Dexterity with Reaching Tasks

06:51

Assessing Dexterity with Reaching Tasks

Behavioral Science

7.6K Views

An Introduction to Reward and Addiction

09:44

An Introduction to Reward and Addiction

Behavioral Science

34.5K Views

Positive Reinforcement Studies

07:06

Positive Reinforcement Studies

Behavioral Science

24.4K Views

Self-administration Studies

09:29

Self-administration Studies

Behavioral Science

24.5K Views

An Introduction to Modeling Behavioral Disorders and Stress

10:17

An Introduction to Modeling Behavioral Disorders and Stress

Behavioral Science

19.2K Views

Modeling Social Stress

08:14

Modeling Social Stress

Behavioral Science

15.4K Views

Anxiety Testing

07:47

Anxiety Testing

Behavioral Science

18.5K Views

JoVE logo
Contact Us Recommend to Library
Research
  • JoVE Journal
  • JoVE Encyclopedia of Experiments
  • JoVE Visualize
Business
  • JoVE Business
Education
  • JoVE Core
  • JoVE Science Education
  • JoVE Lab Manual
  • JoVE Quizzes
Solutions
  • Authors
  • Teaching Faculty
  • Librarians
  • K12 Schools
About JoVE
  • Overview
  • Leadership
Others
  • JoVE Newsletters
  • JoVE Help Center
  • Blogs
  • Site Maps
Contact Us Recommend to Library
JoVE logo

Copyright © 2025 MyJoVE Corporation. All rights reserved

Privacy Terms of Use Policies
WeChat QR code