Semeado Síntese de CdSe / CdS Rod e tetrápodes Nanocristais

* These authors contributed equally
JoVE Journal

Cite this Article

Copy Citation | Download Citations | Reprints and Permissions

Manthiram, K., Beberwyck, B. J., Talapin, D. V., Alivisatos, A. P. Seeded Synthesis of CdSe/CdS Rod and Tetrapod Nanocrystals. J. Vis. Exp. (82), e50731, doi:10.3791/50731 (2013).

Please note that all translations are automatically generated.

Click here for the english version. For other languages click here.



Name Company Catalog Number Comments
Sodium hydroxide, 98% Fisher BP359
Myristic acid, 99% Sigma Aldrich M3128
Methanol, 99.8% Fisher A412
Cadmium nitrate tetrahydrate, 99% Sigma Aldrich 20911 Highly toxic
Cadmium oxide (CdO), 99.99% Sigma Aldrich 202894 Highly toxic
1-Octadecene (ODE), 90% Sigma Aldrich O806 Technical grade
Selenium (Se), 100 mesh, 99.99% Sigma Aldrich 229865
Tri-n-octylphosphine (TOP), 97% Strem 15-6655 Air sensitive
Sulfur (S), 99.9995% Alfa Aesar 10343
Trioctylphosphine oxide (TOPO), 99% Strem 15-6661
N-Octadecylphosphonic acid (ODPA), 99% PCI Synthesis 104224
Methanol, anhydrous, 99.8% Sigma Aldrich 322415
Toluene, anhydrous, 99.8% Sigma Aldrich 244511
Chloroform, anhydrous, 99% Sigma Aldrich 288306
Acetone, 99.9% Fisher A949 Dried over 4Å sieves
Hexane, anhydrous, 95% Sigma Aldrich 296090
2-Propanol, anhydrous, 99.5% Sigma Aldrich 278475
Selenium dioxide, 99.999% Sigma Aldrich 204315
Oleic acid, 90% Sigma Aldrich 364525 Technical grade
Oleylamine, 70% Sigma Aldrich O7805 Technical grade
Propylphosphonic acid (PPA), 95% Sigma Aldrich 305685
Ethanol, anhydrous, 99.5% Sigma Aldrich 459836
Octylamine, 99% Sigma Aldrich O5802



  1. Talapin, D. V., Lee, J. -S., Kovalenko, M. V., Shevchenko, E. V. Propects of Colloidal Nanoscrystals for Electronic and Optoelectronic Applications. Chem. Rev. 110, 389-458 (2010).
  2. Hines, M. A., Guyot-Sionnest, P. Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals. J. Phys. Chem. 100, 468-471 (1996).
  3. Peng, X., Schlamp, M. C., Kadavanich, A., Alivisatos, A. P. Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility. J. Am. Chem. Soc. 119, 7019-7029 (1997).
  4. Talapin, D. V., et al. Highly Emissive Colloidal CdSe/CdS Heterostructures of Mixed Dimensionality. Nano Lett. 3, 1677-1681 (2003).
  5. Carbone, L., et al. Synthesis and Micrometer-Scale Assembly of Colloidal CdSe/CdS Nanorods Prepared by a Seeded Growth Approach. Nano Lett. 7, 2942-2950 (2007).
  6. Talapin, D. V., Nelson, J. H., Shevchenko, E. V., Aloni, S., Sadtler, B., Alivisatos, A. P. Seeded Growth of Highly Luminscent CdSe/CdS Nanoheterostructures with Rod and Tetrapod Morphologies. Nano Lett. 7, 2951-2959 (2007).
  7. Dabbousi, B. O., et al. (CdSe)ZnS Core-Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites. J. Phys. Chem. B. 101, 9463-9475 (1997).
  8. Sugimoto, T. Preparation of Monodispersed Colloidal Particles. Adv. Colloid Interface Sci. 28, 65-108 (1987).
  9. Shevchenko, E. V., et al. Study of Nucleation and Growth in the Organometallic Synthesis of Magnetic Alloy Particles: The Role of Nucleation and Rate in Size Control of CoPt3 Nanocrystals. J. Am. Chem. Soc. 125, 9090-9101 (2003).
  10. Carbone, L., Cozzoli, P. D. Colloidal Heterostructured Nanocrystals: Synthesis and Growth Mechanisms. Nanotoday. 5, 449-493 (2010).
  11. Baumgardner, W. J., Quan, Z., Fang, J., Hanrath, T. Timing Matters: The Underappreciated Role of Temperature Ramp Rate for Shape Control and Reproducibility of Quantum Dot Synthesis. Nanoscale. 4, 3625-3528 (2012).
  12. Evans, C. M., Evans, M. E., Krauss, T. D. Mysteries of TOPSe Revealed: Insights into Quantum Dot Nucleation. J. Am. Chem. Soc. 132, 10973-10975 (2010).
  13. Steckel, J. S., Yen, B. K. H., Oertel, D. C., Bawendi, M. G. On the Mechanism of Lead Chalcogenide Nanocrystal Formation. J. Am. Chem. Soc. 128, 13031-13033 (2006).
  14. Wang, F., Tang, R., Buhro, W. E. The Trouble with TOPO; Identification of Adventitious Impurities Beneficial to the Growth of Cadmium Selenide Quantum Dots, Rods, and Wires. Nano Lett. 8, 3521-3524 (2008).
  15. Shriver, D. F., Drezdzon, M. A. The Manipulation of Air-Sensitive Compounds. John Wiley and Sons. New York, New York, USA. (1986).
  16. Yang, Y. A., Wu, H., Williams, K. R., Cao, Y. C. Synthesis of CdSe and CdTe Nanocrystals without Precursor Injection. Angew. Chem. Int. Ed. 44, 6712-6715 (2005).
  17. Yu, W. W., Qu, L., Guo, W., Peng, X. Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals. Chem. Mater. 15, 2854-2860 (2003).
  18. Chen, O., et al. Synthesis of Metal-Selenide Nanocrystals Using Selenium Dioxide as the Selenium Precursor. Angew. Chem. Int. Ed. 47, 8638-8641 (2008).
  19. Huang, J., Kovalenko, M. V., Talapin, D. V. Alkyl Chains of Surface Ligands Affect Polytypism of CdSe Nanocrystals and Play an Important Role in the Synthesis of Anisotropic Nanoheterostructures. J. Am. Chem. Soc. 132, 15866-15868 (2010).
  20. Čapek, R. K., et al. Optical Properties of Zincblende Cadmium Selenide Quantum Dots. J. Phys. Chem. C. 114, 6371-6376 (2010).
  21. Qu, L., Peng, X. Control of Photoluminescence Properties of CdSe Nanocrystals in. Growth. J. Am. Chem. Soc. 124, 2049-2055 (2002).
  22. Manna, L., Scher, E. C., Alivisatos, A. P. Shape Control of Colloidal Semiconductor Nanocrystals. J. Cluster Sci. 13, 521-532 (2002).
  23. Sitt, A., Sala, F. D., Menagen, G., Banin, U. Multiexciton Engineering in Seeded Core/Shell Nanorods: Transfer from Type-I to Quasi-type-II Regimes. Nano Lett. 9, 3470-3476 (2009).



    Post a Question / Comment / Request

    You must be signed in to post a comment. Please or create an account.

    Usage Statistics