Valutare plasmoniche Trasporti in Current-carrying Argento Nanowires

Engineering

Your institution must subscribe to JoVE's Engineering section to access this content.

Fill out the form below to receive a free trial or learn more about access:

 

Cite this Article

Copy Citation | Download Citations | Reprints and Permissions

Song, M., Stolz, A., Zhang, D., Arocas, J., Markey, L., Colas des Francs, G., Dujardin, E., Bouhelier, A. Evaluating Plasmonic Transport in Current-carrying Silver Nanowires. J. Vis. Exp. (82), e51048, doi:10.3791/51048 (2013).

Please note that all translations are automatically generated.

Click here for the english version. For other languages click here.

Abstract

Materials

Name Company Catalog Number Comments
DMEM Invitrogen ABCD1234
Ethylene glycol (EG) Sinopharm Chemical Reagent Co., Ltd T20111130
PMMA Allresist AR-P 679
Acetone Analar Normapur VWR Prolabo 20066.296
Isopropanol (IPA) Analar Normapur VWR Prolabo 20842.298
AgNO3 Sinopharm Chemical Reagent Co., Ltd 20080826
Poly-(vinylpyrrolidone) (PVP) Aladdin Chemistry Co., Ltd 1041671-31744
Dimethysilicone Sinopharm Group Company Limited H201-500
Propylene Glycol Methyl Ether Acetate Microchemicals Gmbh AZ EBR
Inverted optical microscope Nikon TE 2000
Microscope objective Nikon 1.49/100X TIRF Plan-Apo
CCD Cameras (2x) Andor Luca-S
Regulated power supply RHK SPM 1000
Acquisition data RHK SPM 1000
Current to voltage converter homemade Gain 10 mA/V
Electron beam microscope JEOL FEG 6500
Lithography addon RAITH Elphy
Spincoater PRIMUS STT15
Thermal evaporator PLASSYS MEB 400
Micrometer probing stage (2x) SÜSS MicroTec PH110
Piezoelectric stage Mad City Labs Nano LP100

DOWNLOAD MATERIALS LIST

References

  1. Ozbay, E. Plasmonics: Merging photonics and electronics at nanoscale dimensions. Sci. 311, (5758), 189-193 (1126).
  2. Zia, R., Schuller, J. A., Chandran, A., Brongersma, M. L. Plasmonics: the next chip-scale technology. Mater. Today. 9, (7), (2006).
  3. Genet, W., C,, Bozhevolnyi, S. I. Surface-plasmon circuitry. Phys. Today. 61, (5), 44-50 (2008).
  4. Pyayt, A. L., Wiley, B., Xia, Y., Chen, A., Dalton, L. Integration of photonic and silver nanowire plasmonic waveguides. Nat. Nanotechnol. 3, 660-665 (2008).
  5. Dickson, R. M., Lyon, L. A. Unidirectional Plasmon Propagation in Metallic Nanowires. J. Phys. Chem. B. 104, 6095-6098 (2000).
  6. Kan, C. X., Zhu, J. -J., Zhu, X. -G. Silver nanostructures with well-controlled shapes-synthesis, characterization and growth mechanism. J. Phys. D: Appl. Phys. 41, (15), 155304 (2008).
  7. Song, M., et al. Electron-induced limitation of surface plasmon propagation in silver nanowires. Nanotechnol. 24, (9), (2013).
  8. Drezet, A., et al. Leakage radiation microscopy of surface plasmonpolaritons. Mater. Sci. Eng. B. 148, 220-229 (2007).
  9. Song, M., et al. Imaging Symmetry-Selected Corner Plasmon Modes in Penta-Twinned Crystalline Ag Nanowires. ACS Nano. 5, (7), 5874-5880 (1021).
  10. Miljković, V., Shegai, T., Johansson, P., Käll, M. Simulating light scattering from supported plasmonic nanowires. Opt. Express. 20, (10), 10816-10826 (2012).
  11. Massenot, S., et al. Polymer-metal waveguides characterization by Fourier plane leakage radiation microscopy. Appl. Phys. Lett. 91, (2007).
  12. Ditlbacher, H., et al. Silver Nanowires as Surface Plasmon Resonators. Phys. Rev. Lett. 95, (25), 257403 (2005).
  13. Margueritat, J., et al. Influence of the number of nanoparticles on the enhancement properties of surface-enhanced Raman scattering active area: sensitivity versus repeatability. ACS Nano. 5, (3), 1630-1638 (2011).
  14. Rivera, T. P., Lecarme, O., Hartmann, J., Rossitto, E., Berton, K., Peyrade, D. Assisted convective-capillary force assembly of gold colloids in a microfluidic cell: Plasmonic properties of deterministic nanostructures. J. Vac. Sci. Technol. B. 26, 2513-2519 (2008).
  15. Cronin, S. B., et al. Thermoelectric investigation of bismuth nanowires. 18th international conference on Thermoelectrics, 554-557 (1999).
  16. Cronin, S. B., et al. Making electrical contacts yo nanowires with a thick oxide coating. Nanotechnol. 13, (5), 653 (2002).
  17. Colasdes Francs, G., et al. Integrated plasmonic waveguides: A mode solver based on density of states formulation. Phys. Rev. B. 80, (11), 115419 (2009).
  18. Stahlmecke, B., et al. Electromigration in self-organized single-crystalline silver nanowires. Appl. Phys. Lett. 88, (5), 053122 (2006).
  19. Kim, F., Sohn, K., Wu, J., Huang, J. Chemical Synthesis of Gold Nanowires in Acidic Solutions. J. American Chem. Soc. 130, (5), 14442-14443 (2008).
  20. Novotny, L., Hecht, B. Princ. Nano-Opt. Cambridge University Press. (2006).
  21. Wang, W. M., et al. Dip-pen nanolithography of electrical contacts to single-walled carbon nanotubes. ACS Nano. 3, (11), 35443-33551 (2009).
  22. Kuzyk, A. Dielectrophoresis at the nanoscale. Electrophoresis. 32, (17), 2307-2313 (2011).
  23. Freer, E. M., Grachev, O., Duan, X., Martin, S., Stumbo, D. P. High-yield self-limiting single-nanowire assembly with dielectrophoresis. Nat. Technol. 5, 525-530 (2010).
  24. Huang, J. -S., et al. Atomically-flat single-crystalline gold nanostructures for plasmonic nanocircuitry. Nat. Comm. 1, 150 (2010).

Comments

0 Comments


    Post a Question / Comment / Request

    You must be signed in to post a comment. Please or create an account.

    Usage Statistics