Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Biochemistry

आंतरिक माइटोकॉन्ड्रियल झिल्ली Na + के लिए संवेदनशीलता आंशिक रूप से विभाजित कार्यात्मक CoQ पूल से पता चलता है

Published: July 20, 2022 doi: 10.3791/63729

Summary

यह प्रोटोकॉल एक तुलनात्मक परख का वर्णन करता है, माइटोकॉन्ड्रियल जटिल गतिविधियों CI + CIII और CII + CIII का उपयोग Na + की उपस्थिति या अनुपस्थिति में, आंशिक रूप से खंडित कार्यात्मक CoQ पूल के अस्तित्व का अध्ययन करने के लिए।

Abstract

आंतरिक माइटोकॉन्ड्रियल झिल्ली (आईएमएम) में यूबीक्विनोन (सीओक्यू) पूल आंशिक रूप से या तो जटिल I या FAD-निर्भर एंजाइमों के लिए विभाजित होते हैं। इस तरह के उपखंड को आसानी से एक तुलनात्मक परख द्वारा मूल्यांकन किया जा सकता है NADH या जमे हुए पिघले हुए माइटोकॉन्ड्रिया में इलेक्ट्रॉन दाताओं के रूप में succinate का उपयोग करके, जिसमें साइटोक्रोम सी (साइट सी) कमी को मापा जाता है। परख आईएमएम पर Na + के प्रभाव पर निर्भर करता है, इसकी तरलता को कम करता है। यहां, हम NaCl या KCl की उपस्थिति में NADH-cyt c oxidoreductase गतिविधि और succinate-cyt c oxidoreductase गतिविधियों को मापने के लिए एक प्रोटोकॉल प्रस्तुत करते हैं। प्रतिक्रियाएं, जो एक चरणबद्ध तरीके से एक क्यूवेट में अभिकर्मकों के मिश्रण पर निर्भर करती हैं, को ना + या के + की उपस्थिति में 4 मिनट के दौरान स्पेक्ट्रोफोटोमेट्रिक रूप से मापा जाता है। अवशोषण में अनिर्दिष्ट परिवर्तन को घटाने के लिए विशिष्ट एंजाइम अवरोधकों की उपस्थिति में समानांतर में एक ही मिश्रण किया जाता है। NADH-cyt c oxidoreductase गतिविधि इन धनायनों में से किसी की उपस्थिति में कमी नहीं करती है। हालांकि, Succinate-cyt c oxidoreductase गतिविधि NaCl की उपस्थिति में कम हो जाती है। यह सरल प्रयोग हाइलाइट करता है: 1) आईएमएम तरलता और कोक्यू हस्तांतरण को कम करने में ना + का प्रभाव; 2) कि सुपरकॉम्प्लेक्स I + III2 आईएमएम तरलता को कम करने से प्रभावित होने से यूबीक्विनोन (सीओक्यू) हस्तांतरण की रक्षा करता है; 3) कि CI और CIII के बीच CoQ स्थानांतरण कार्यात्मक रूप से CII और CIII के बीच CoQ हस्तांतरण से अलग है। ये तथ्य आईएमएम में कार्यात्मक रूप से विभेदित CoQ पूल के अस्तित्व का समर्थन करते हैं और दिखाते हैं कि उन्हें माइटोकॉन्ड्रिया के बदलते Na + वातावरण द्वारा विनियमित किया जा सकता है।

Introduction

माइटोकॉन्ड्रियल ऑक्सीडेटिव फॉस्फोराइलेशन सिस्टम (OXPHOS) एडेनोसिन ट्राइफॉस्फेट (एटीपी) संश्लेषण, प्रतिक्रियाशील ऑक्सीजन प्रजातियों (आरओएस) उत्पादन, और माइटोकॉन्ड्रिया द्वारा निकोटीनामाइड एडेनिन डाइन्यूक्लियोटाइड (एनएडीएच) या सक्सिनेट जैसे समकक्षों को कम करने का मुख्य मार्ग है। OXPHOS प्रणाली पांच प्रोटीन परिसरों से बना है: कॉम्प्लेक्स I (CI) NADH को ऑक्सीकरण करता है और CoQ को यूबीक्विनॉल (CoQH2) में कम कर देता है। कॉम्प्लेक्स II (CII) fumarate में succinate oxidizes और CoQH2 में CoQ को कम कर देता है। जटिल III (CIII) CoQH2 को वापस CoQ में ऑक्सीकरण करता है, जिससे साइटोक्रोम c (cyt c) कम हो जाता है। अंत में, जटिल IV (CIV) साइट c को ऑक्सीकरण करता है और पानी में ऑक्सीजन को कम करता है। यह ऑक्सीडोरडक्शन चेन, तथाकथित इलेक्ट्रॉन परिवहन श्रृंखला (एमईटीसी), आईएमएम में एच + के पंपिंग के लिए युग्मित है, जो एटीपी में एडेनोसिन डाइफॉस्फेट (एडीपी) को फॉस्फोराइलेट करने के लिए जटिल वी (सीवी) द्वारा उपयोग किए जाने वाले एक इलेक्ट्रोकेमिकल ग्रेडिएंट का निर्माण करता है।

mETC कॉम्प्लेक्स या तो आईएमएम में अकेले हो सकते हैं या सुपरकॉम्प्लेक्स नामक चतुर्भुज संरचनाओं में इकट्ठा हो सकते हैं। CIV CIII के साथ इकट्ठा हो सकता है, III2 + IV या Q-respirasome का निर्माण कर सकता है (क्योंकि यह CoQH 2) 1,2,3 की उपस्थिति में सांस लेने में सक्षम है या होमोडिमर्स या होमोलिगोमर्स4 बना सकता है। CIII सीआई के साथ बातचीत कर सकता है, जिससे सुपरकॉम्प्लेक्स I + III25 बन सकता है। अंत में, सीआई क्यू-रेस्पिरोसोम के साथ बातचीत करने में भी सक्षम है, जो I + III2 + IV या एन-रेस्पिरोसोम का निर्माण करता है (क्योंकि यह NADH का उपभोग करने वाले श्वसन कर सकता है) 1,6,7,8,9,10

CoQ और cyt c मोबाइल इलेक्ट्रॉन वाहक हैं जो क्रमशः CI/ CII से CIII तक और CIII से CIV तक इलेक्ट्रॉनों को स्थानांतरित करने के प्रभारी हैं। सुपरकॉम्प्लेक्स इन वाहकों के लिए एक कार्यात्मक स्थानीय प्रतिबंध लगाते हैं या नहीं, पिछले दो दशकों के दौरान गहन बहस का विषय रहा है 2,7,11,12,13,14,15,16,17। हालांकि, कई स्वतंत्र समूहों ने प्रदर्शित किया है कि कोक्यू और साइट सी को आईएमएम में पूल में कार्यात्मक रूप से विभाजित किया जा सकता है। CoQ के संबंध में, इसे कार्यात्मक रूप से CI (CoQNAD) के लिए एक विशिष्ट CoQ पूल में विभाजित किया जा सकता है और FAD-निर्भर एंजाइमों (CoQFAD) 1,7,12,18,19 को समर्पित एक और पूल। हालांकि, आंशिक रूप से खंडित कार्यात्मक कोक्यू पूल के अस्तित्व को अलग करने के लिए, वैकल्पिक ऑक्सीडेज (एओएक्स) के ओवरएक्सप्रेशन और विशिष्ट एमटीडीएनए म्यूटेंट की पीढ़ी, जो सीआईआईआई की अनुपस्थिति में सीआई को इकट्ठा कर सकती है, को 1,19,20 की आवश्यकता थी।

हाइपोक्सिया के दौरान प्रतिक्रियाशील ऑक्सीजन प्रजातियों (आरओएस) उत्पादन का तंत्र हाल ही में अज्ञात था। तीव्र हाइपोक्सिया पर, सीआई सक्रिय / निष्क्रिय (ए / डी) संक्रमण से गुजरता है, जिसमें इसके एच + पंपिंग एनएडीएच-कोक्यू ऑक्सीडोरेडक्टेस गतिविधि में कमी शामिल है। एच + पंपिंग में इस तरह की कमी माइटोकॉन्ड्रियल मैट्रिक्स को अम्लीकृत करती है और आंशिक रूप से माइटोकॉन्ड्रियल मैट्रिक्स में कैल्शियम-फॉस्फेट अवक्षेप को भंग कर देती है, घुलनशील सीए2 + जारी करती है। घुलनशील Ca2+ में यह वृद्धि Na+/Ca2+ एक्सचेंजर (NCLX) को सक्रिय करती है, जो Na+ के बदले Ca2+ को बाहर निकालती है। माइटोकॉन्ड्रियल ना + वृद्धि आईएमएम के आंतरिक पक्ष में फॉस्फोलिपिड्स के साथ बातचीत करती है, सीआईआई और सीआईआईआई के बीच इसकी तरलता और सीओक्यू हस्तांतरण को कम करती है, अंत में सुपरऑक्साइड अनियन, एक रेडॉक्स सिग्नल21 का उत्पादन करती है। दिलचस्प बात यह है कि CoQ हस्तांतरण केवल CII और CIII के बीच कम हो गया था, लेकिन CI और CIII के बीच नहीं, यह उजागर करते हुए कि 1) Na + माइटोकॉन्ड्रिया में मौजूदा CoQ पूल में से केवल एक को संशोधित करने में सक्षम था; 2) आईएमएम में कार्यात्मक रूप से विभेदित CoQ पूल मौजूद हैं। इस प्रकार, माइटोकॉन्ड्रियल एंजाइम गतिविधियों के अध्ययन के लिए एक व्यापक रूप से उपयोग किए जाने वाले प्रोटोकॉल का उपयोग उल्लिखित कोक्यू पूल के अस्तित्व का आकलन करने के लिए किया जा सकता है।

वर्तमान प्रोटोकॉल ऑक्सीकृत साइट सी, CIII के सब्सट्रेट की कमी के माप पर आधारित है, succinate (यानी, CII सब्सट्रेट) या NADH (यानी, CI सब्सट्रेट) की उपस्थिति में absorbance द्वारा। एक ही नमूने को दो में विभाजित किया गया है, जिनमें से एक को KCl के साथ इलाज किया जाएगा, और दूसरा NaCl की समान एकाग्रता के साथ। इस तरह, यह देखते हुए कि Na + IMM तरलता को कम करता है, यदि CoQ IMM में एक अद्वितीय पूल में मौजूद है, तो CI + CIII और CII + CIII दोनों Na + की उपस्थिति में कमी आएगी। हालांकि, यदि CoQ आंशिक रूप से विभाजित कार्यात्मक CoQ पूल में मौजूद था, तो Na + का प्रभाव ज्यादातर (या केवल) CII + CIII गतिविधि पर स्पष्ट होगा, लेकिन CI + CIII पर नहीं। जैसा कि हाल ही में प्रकाशित21, Na + केवल CII और CIII (चित्रा 1C, D) के बीच CoQ हस्तांतरण को प्रभावित करता है, लेकिन CIII और CIII (चित्रा 1A, B) के बीच नहीं।

इस प्रोटोकॉल, तकनीकों के एक पैनोपली के साथ, आईएमएम में आंशिक रूप से विभाजित कार्यात्मक CoQ पूल के अस्तित्व की पुष्टि करने के लिए उपयोग किया गया है, एक CI (यानी, CoQNAD) को समर्पित है, और एक और FAD-लिंक्ड एंजाइमों (यानी, CoQFAD) के लिए समर्पित है 1,3,7; एक अवलोकन है कि, हालांकि यह22 बहस जारी है, कई समूहों 7,19 द्वारा स्वतंत्र रूप से पुष्टि की गई है। इस प्रकार, सुपरकॉम्प्लेक्स में सीआई का सुपरअसेंबली सीओक्यू की स्थानीय गतिशीलता पर प्रभाव डालता है, जो सुपरकॉम्प्लेक्स 1,7,13,14,23,24,25 के भीतर सीआईआईआई द्वारा इसके उपयोग की सुविधा प्रदान करता है

Subscription Required. Please recommend JoVE to your librarian.

Protocol

सभी पशु प्रयोगों को प्रयोगशाला जानवरों की देखभाल और उपयोग के लिए गाइड के बाद किया गया था और 22 सितंबर 2010 (2010/63/UE) के यूरोपीय संघ के निर्देश के अनुसार और 1 फरवरी 2013 (53/2013) के स्पेनिश रॉयल डिक्री के साथ सेंट्रो नेसिओनल डी इन्वेस्टिगासिओन्स कार्डियोवैस्कुलर्स कार्लोस III (CNIC), स्पेन की संस्थागत नैतिकता समिति द्वारा अनुमोदित किया गया था। उपयोग किए गए जानवरों की संख्या और उनकी पीड़ा को कम करने के लिए सभी प्रयास किए गए थे।

नोट: माइटोकॉन्ड्रियल CoQ पूल के विभाजन का अध्ययन करने के लिए इस तुलनात्मक परख निम्नानुसार वर्णित है:

1. प्रोटीन परिमाणीकरण

  1. फ्रीज और एक जंगली प्रकार माउस जिगर से अलग माइटोकॉन्ड्रिया26 पिघला तीन बार (यानी, माइटोकॉन्ड्रियल झिल्ली) प्रयोग से पहले प्रतिक्रिया substrates करने के लिए पारगम्य ऑर्गेनेल बनाने के लिए.
  2. ब्रैडफोर्ड या Bicinchoninic एसिड (BCA) विधियों द्वारा पृथक माइटोकॉन्ड्रिया नमूने की प्रोटीन मात्रा को मापें। ब्रैडफोर्ड के मामले में, 1x ब्रैडफोर्ड अभिकर्मक के 1 मिलीलीटर में नमूने के 2 μL जोड़ें।
  3. नमूने को 20 μg प्रत्येक के चार subsamples में विभाजित करें (अर्थात्: A, B, C, D; चित्रा 2A)।

2. सीआई + CIII गतिविधि को मापने

नोट:: प्रोटोकॉल का यह भाग CI+ CIII गतिविधि (चित्रा 2B) को मापने के लिए नमूने A और B का उपयोग करता है।

  1. नमूने A और B को 10 μg प्रत्येक के दो subsamples में विभाजित करें (अर्थात् A1, A2, B1, और B2)। साइट c (10 mg/mL), 100 mM malonate के 10 μL के 10 μL के साथ एक 1 mL क्यूवेट में subsamples में से प्रत्येक को मिलाएं, और 37 °C पर 980 μL तक प्रीहीटेड C1/C2 बफर (तालिका 1) जोड़ें (क्यूवेट A2 और B2 के लिए 979 μL)।
    सावधानी: इस चरण में विषाक्त अभिकर्मकों मैलोनेट और पोटेशियम साइनाइड का उपयोग शामिल है।
    नोट: साइट सी (10 मिलीग्राम / एमएल) को 10 एमएम के2एचपीओ 4 समाधान के 1 एमएल में 10 मिलीग्राम साइट सी को मिलाकर ताजा तैयार किया जाना चाहिए, पीएचको 7.2 में समायोजित किया जाना चाहिए, और इसे पूरे प्रयोग के दौरान बर्फ में बनाए रखा जाना चाहिए।
  2. क्यूवेट A1 और A2 में 1 M KCl के 10 μL जोड़ें, और cuvettes B1 और B2 में 1 M NaCl के 10 μL जोड़ें।
  3. subsamples A2 और B2 युक्त cuvette में 1 mM rotenone के 1 μL जोड़ें।
    सावधानी: इस कदम में विषाक्त अभिकर्मक रोटेनोन का उपयोग शामिल है।
  4. माप से ठीक पहले, सभी क्यूवेट में NADH (10 mM) के 10 μL जोड़ें।
    नोट: 10 μL अधिमानतः cuvette के चरण पर जोड़ा जाता है, इसलिए प्रतिक्रिया मिश्रण पर शुरू होती है।
  5. ध्यान से इसे तीन बार flipping द्वारा cuvette मिश्रण. इसे absorbance cuvette रीडर (UV/ VISJASCO spectrophotometer) में रखें।
  6. माप > पैरामीटर > सामान्य पर क्लिक करें और तरंग दैर्ध्य पर माप पैरामीटर सेट करें: 550 एनएम, और समय: पढ़ने के 4 मिनट; प्रयोग शुरू करने के लिए स्वीकार करें और प्रारंभ करें बटन दबाएँ.
  7. माप के अंत में, फ़ाइल और इस रूप में सहेजें पर क्लिक करके अवशोषण की रैखिक वृद्धि शामिल ढलान को सहेजें। ढलान को मैन्युअल रूप से भी एकत्र किया जा सकता है।

3. सीआईआई + सीआईआईआई गतिविधि को मापने

नोट:: प्रोटोकॉल का यह भाग CII + CIII गतिविधि (चित्रा 2C) को मापने के लिए नमूने C और D का उपयोग करता है।

  1. नमूने सी और डी को 10 μg प्रत्येक के दो subsamples में विभाजित करें (अर्थात् C1, C2, D1, और D2)। साइट सी (10 मिलीग्राम / एमएल), 1 एमएम रोटेनोन के 1 μL के 1 μL के साथ एक 1 mL क्यूवेट में प्रत्येक subsamples को मिलाएं, और 37 °C पर प्रीहीटेड C1/ C2 बफर को 980 μL (cuvettes C2 और D2 के लिए 970 μL) तक जोड़ें।
    सावधानी: इस कदम में विषाक्त अभिकर्मकों पोटेशियम साइनाइड और रोटेनोन का उपयोग शामिल है।
    नोट: साइट सी (10 मिलीग्राम / एमएल) को 10 एमएम के2एचपीओ 4 समाधान के 1 एमएल में 10 मिलीग्राम साइट सी को मिलाकर ताजा तैयार किया जाना चाहिए, पीएचको 7.2 में समायोजित किया जाना चाहिए, और इसे पूरे प्रयोग के दौरान बर्फ में बनाए रखा जाना चाहिए।
  2. Cuvettes C1 और C2 में 1 M KCl के 10 μL जोड़ें, और cuvettes D1 और D2 में 1 M NaCl के 10 μL जोड़ें।
  3. subsamples C2 और D2 युक्त cuvette में 1 mM एंटीमाइसिन A के 1 μL जोड़ें।
    सावधानी: इस चरण में विषाक्त अभिकर्मक एंटीमाइसिन ए का उपयोग शामिल है।
  4. माप से ठीक पहले, सभी क्यूवेट में 10 μL succinate (1 M) जोड़ें।
    नोट: 10 μL अधिमानतः cuvette के चरण पर जोड़ा जाता है, इसलिए प्रतिक्रिया मिश्रण पर शुरू होती है।
  5. क्यूवेट को ध्यान से मिलाएं, इसे तीन बार फ्लिप करें। इसे absorbance cuvette reader (UV/VIS spectrophotometer) में रखें।
  6. माप > पैरामीटर > सामान्य पर क्लिक करें और तरंग दैर्ध्य पर माप पैरामीटर सेट करें: 550 एनएम, और समय: पढ़ने के 4 मिनट; प्रयोग शुरू करने के लिए स्वीकार करें और प्रारंभ करें बटन दबाएँ.
  7. माप के अंत में, फ़ाइल और इस रूप में सहेजें पर क्लिक करके अवशोषण की रैखिक वृद्धि शामिल ढलान को सहेजें। ढलान को मैन्युअल रूप से भी एकत्र किया जा सकता है।

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

इस प्रोटोकॉल से विशिष्ट परिणाम नीचे दर्शाए गए हैं (चित्र 3)। जैसा कि कम साइट सी अवशोषण 550 एनएम पर पता लगाता है, सभी निर्बाध subsamples 550 एनएम पर absorbance में वृद्धि दिखाना चाहिए। बाधित subsamples आदर्श रूप से एक फ्लैट लाइन या थोड़ा बढ़ती ढलान (चित्रा 3) दिखाते हैं। बाधित subsamples से ढलानों को निर्बाध subsamples से घटाया जा करने के लिए कर रहे हैं।

नमूने ए और बी, दोनों को उनके संवाददाता निषेध द्वारा सही किया गया है और जो एनएडीएच का प्रतिनिधित्व करते हैं: साइट सी ऑक्सीडोरेडक्टेस गतिविधि, एक समान ढलान (चित्रा 3 ए) है। हालांकि, subsamples C और D, दोनों को उनके संवाददाता निषेध द्वारा सही किया गया है और जो succinate: cyt c oxidoreductase गतिविधि का प्रतिनिधित्व करते हैं, अलग-अलग हैं, जिसमें subsample C की गतिविधि subsample D (चित्रा 3B) की गतिविधि से अधिक है। ध्यान दें कि बेसल अवशोषण नमूनों के बीच थोड़ा अलग हो सकता है (चित्रा 3 ए)।

ये परिणाम (यानी, ढलानों को पहले से ही उनके अवरोधक द्वारा सही किया गया है; तालिका 2) उपयोग किए गए प्रोटीन की मात्रा (0.01 मिलीग्राम) को a.u./min/mg प्रोटीन के रूप में विभाजित करके दर्शाया जा सकता है। इस मान से, साइट सी में कमी की दर को लैम्बर-बीयर कानून21 का उपयोग करके आगे की गणना की जा सकती है।

महत्वपूर्ण रूप से, ये परिणाम कई कारकों के अनुसार भिन्न हो सकते हैं: (i) नमूनों की उत्पत्ति। यह देखते हुए कि विभिन्न ऊतकों और सेल प्रकारों में OXPHOS परिसरों और सुपरकॉम्प्लेक्स की एक चर संरचना होती है, पूर्ण मूल्य और सापेक्ष परिवर्तन नमूनों में भिन्न हो सकते हैं। (ii) यह देखते हुए कि विभिन्न ऊतकों में OXPHOS परिसरों और सुपरकॉम्प्लेक्स की एक चर संरचना हो सकती है, प्रतिक्रिया मिश्रण में अधिक जमे हुए-पिघले हुए माइटोकॉन्ड्रिया (एक निश्चित ऊतक के कम निरपेक्ष मूल्यों की क्षतिपूर्ति करने के लिए) जोड़ने से एक द्वितीयक प्रभाव हो सकता है, जो यह है कि नमूने में प्रोटीन / फॉस्फोलिपिड के प्रति मिलीग्राम Na + या K + का अनुपात कम हो जाता है। इस प्रकार, सावधानी बरती जानी चाहिए जब माइटोकॉन्ड्रिया की मात्रा या नमूने में जोड़े गए Na + / K + एकाग्रता की मात्रा को अलग किया जाता है। (iii) फ्रीज-पिघलने वाले चक्रों, अभिकर्मकों के वाणिज्यिक बैच, या पृथक माइटोकॉन्ड्रिया के अलग-अलग भंडारण बफर की अवधि और तापमान से अंतर-प्रयोगात्मक भिन्नता उत्पन्न हो सकती है।

Figure 1
चित्र 1: Na+ CII और CIII के बीच विशेष रूप से इलेक्ट्रॉन स्थानांतरण को कम करता है, लेकिन CI और CIII के बीच नहीं। (A) NADH और cyt c के बीच इलेक्ट्रॉन स्थानांतरण का योजनाबद्ध प्रतिनिधित्व, सुपरकॉम्प्लेक्स I + III2 में CoQNAD के माध्यम से होता है। (बी) एनएडीएच और साइट सी के बीच इलेक्ट्रॉन स्थानांतरण, सुपरकॉम्प्लेक्स I + III2 में कोक्यूएनएडी के माध्यम से होता है, इंट्रामाइटोकॉन्ड्रियल ना + से प्रभावित नहीं होता है। (c) सीआईआई में CoQFAD के माध्यम से होने वाले succinate और cyt c के बीच इलेक्ट्रॉन हस्तांतरण का योजनाबद्ध प्रतिनिधित्व। (डी) एनएडीएच और साइट सी के बीच इलेक्ट्रॉन स्थानांतरण, सुपरकॉम्प्लेक्स I + III2 में CoQFAD के माध्यम से होता है, उच्च इंट्रामाइटोकॉन्ड्रियल Na + द्वारा कम हो जाता है। कृपया इस आंकड़े का एक बड़ा संस्करण देखने के लिए यहाँ क्लिक करें.

Figure 2
चित्र 2: मूल नमूने के उपखंड से गतिज माप तक प्रोटोकॉल का योजनाबद्ध प्रतिनिधित्व। (A) subsample विभाजन का योजनाबद्ध प्रतिनिधित्व, सभी subsamples के समान मूल को उजागर करता है। () उप-नमूने ए1 और बी1 में सीआई+सीआईआईआई गतिविधि के लिए अभिकर्मकों के परिवर्धन के क्रमिक चरणों की योजना। लाल सर्कल उस स्थान का प्रतिनिधित्व करता है जहां NADH को आदर्श रूप से जोड़ा जाना चाहिए। ध्यान दें कि subsamples A2 और B2 के साथ एकमात्र अंतर उत्तरार्द्ध में रोटेनोन का अतिरिक्त अतिरिक्त है। () उप-नमूने सी1 और डी1 में सीआईआई+सीआईआईआई कार्यकलाप के लिए अभिकर्मकों के परिवर्धन के क्रमिक चरणों की योजना। लाल सर्कल उस स्थान का प्रतिनिधित्व करता है जहां सुकिनेट को आदर्श रूप से जोड़ा जाना चाहिए। ध्यान दें कि subsamples C2 और D2 के साथ एकमात्र अंतर उत्तरार्द्ध में एंटीमाइसिन ए का अतिरिक्त अतिरिक्त है। कृपया इस आंकड़े का एक बड़ा संस्करण देखने के लिए यहाँ क्लिक करें.

Figure 3
चित्रा 3: NADH या succinate इसके अलावा पर माउस जिगर माइटोकॉन्ड्रियल झिल्ली द्वारा साइट सी कमी पर Na + का प्रभाव। () माउस जिगर माइटोकॉन्ड्रियल झिल्ली द्वारा साइट सी कमी पर Na + के प्रभाव को दर्शाने वाले प्रतिनिधि निशान NADH को ऑक्सीकरण करते हैं। (बी) माउस जिगर माइटोकॉन्ड्रियल झिल्ली ऑक्सीकरण succinate द्वारा साइट सी कमी पर Na + के प्रभाव को दिखाने वाले प्रतिनिधि निशान। कृपया इस आंकड़े का एक बड़ा संस्करण देखने के लिए यहाँ क्लिक करें.

यौगिक एकाग्रता
K2HPO4 25 mM
MgCl2 5 mM
KCN 3 mM
गोजातीय सीरम एल्ब्यूमिन (बीएसए) 2.5 mg/mL

तालिका 1: C1/C2 बफर की संरचना। बफर संरचना दाढ़ सांद्रता में प्रस्तुत की जाती है।

अपेक्षित दरें +KCl (माध्य) +KCl (एसडी) +NaCl (माध्य) +NaCl (एसडी) मान-व्हिटनी पी मान
CII + CIII (n = 4) 0.050659 0.0068377 0.023217 0.0024511 0.0286
अलग-अलग मान 0.0509629 0.02250151
0.0561086 0.02664035
0.0393956 0.01984683
0.0561695 0.0238827
CI + CIII (n = 4) 0.016681 0.00237326 0.017756 0.0029472 0.4857
अलग-अलग मान 0.01610133 0.01780299
0.01878711 0.01901848
0.01303777 0.01308397
0.01879871 0.02112066

तालिका 2: अपेक्षित दरों की श्रेणियाँ. प्रत्येक गतिविधि के लिए अपेक्षित मान मनमाने ढंग से इकाइयों में प्रस्तुत किए जाते हैं। +KCl और +NaCl के बीच इसी सांख्यिकीय परीक्षण भी प्रस्तुत किया गया है। "n" प्रतिकृतियों की संख्या का प्रतिनिधित्व करता है।

Subscription Required. Please recommend JoVE to your librarian.

Discussion

हालांकि यह प्रोटोकॉल आंशिक रूप से खंडित कोक्यू पूल के अस्तित्व की पहचान करने के लिए एक बहुत ही सरल प्रक्रिया का प्रतिनिधित्व करता है, लेकिन ध्यान में रखने के लिए कुछ महत्वपूर्ण कदम हैं। Substrates (यानी, NADH या succinate) अधिमानतः पिछले जोड़ा जाता है क्योंकि इन यौगिकों का autooxidation हो सकता है। Cuvette के flipping बुलबुले जो पढ़ने के साथ हस्तक्षेप कर सकते हैं के गठन से बचने के लिए सावधान रहना चाहिए.

इसके अलावा, वर्तमान तकनीक कुछ सीमाओं को प्रस्तुत करती है जो उल्लेख करने योग्य हैं। माप बरकरार माइटोकॉन्ड्रिया में नहीं किए जाते हैं। इस प्रकार, कृत्रिम सामग्री और बफर के अनुपात के परिणामस्वरूप माइटोकॉन्ड्रिया के मूल वातावरण के साथ अंतर हो सकता है।
अभिकर्मकों को अधिक मात्रा में जोड़ा जाता है, और वे बरकरार ऊतकों में सब्सट्रेट की वास्तविक उपलब्धता का प्रतिनिधित्व नहीं कर सकते हैं।

वर्तमान विधियों का अर्थ है कि बहुत विशिष्ट आनुवंशिक मॉडल और उपकरणों का उत्पादन और उपयोग जोकई प्रयोगशालाओं में आसानी से उपलब्ध नहीं हैं। यह प्रोटोकॉल व्यापक रूप से उपलब्ध अभिकर्मकों और उपकरणों का उपयोग करके आंशिक रूप से विभेदित CoQ पूल के अस्तित्व को मापने के लिए एक विश्वसनीय और आसान-से-आसान विधि प्रदान करता है। इस प्रकार, यह संभव है कि इसे माइटोकॉन्ड्रियल रोग के आनुवंशिक मॉडल की तुलना में भविष्य के अध्ययनों में लागू किया जा सकता है।

एमईटीसी में मोबाइल इलेक्ट्रॉन वाहक की गतिशीलता अभी भी एक अत्यधिक बहस का विषयहै 25,27, हालांकि आंशिक रूप से विभेदित पूल का अस्तित्व 7,12,18,28,29 स्वीकार किया जा रहा है। हाल ही में, उच्च-रिज़ॉल्यूशन श्वसनमिति और एओएक्स1 को व्यक्त करने वाले कई OXPHOS उत्परिवर्ती के विस्तृत जैव रासायनिक लक्षण वर्णन, प्राकृतिक लिपिड परिवेश 7 को संरक्षित करने वाले परिष्कृत क्रायोइलेक्ट्रॉन माइक्रोस्कोपीअध्ययनों के साथ, चर्चा में प्रकाश लाया है। यह आंशिक रूप से खंडित कार्यात्मक CoQ पूल के अस्तित्व के पक्ष में भारी तर्क देता है।

इसके अलावा, शारीरिक उत्तेजनाओं को विभिन्न कोक्यू पूल द्वारा विनियमित करने के लिए दिखाया गया है; विशेष रूप से, तीव्र hypoxic प्रतिक्रिया intramitochondrial Na + द्वारा संचालित। हाइपोक्सिया के दौरान माइटोकॉन्ड्रिया में उच्च Na + का स्तर सीआईआई और सीआईआईआई के बीच इलेक्ट्रॉन हस्तांतरण को कम करता है, सीआईआईआई के स्तर पर क्यू चक्र को अनकपल करता है और एक सुपरऑक्साइड अनियन का उत्पादन करता है। इसके विपरीत, सीआई और सीआईआईआई के बीच इलेक्ट्रॉन स्थानांतरण21 में कमी नहीं आई। वर्तमान प्रोटोकॉल बड़े पैमाने पर उस प्रक्रिया की व्याख्या करता है जिसके द्वारा इन परिणामों को प्राप्त किया गया था।

आगे के नियंत्रण को वर्तमान प्रोटोकॉल पर लागू किया जा सकता है यदि अध्ययन के तहत उपचार सेल्यूल या विवो में किया जाता है, जो सीआई, सीआईआई और सीआईआईआई की अलग-अलग जटिल गतिविधियां हैं, क्योंकि उनकी व्यक्तिगत मात्रा या एकल गतिविधियां उपचार के साथ-साथ भिन्न हो सकती हैं। ऊपर वर्णित एक बहुत ही समान प्रक्रिया के बाद, Na + की उपस्थिति या अनुपस्थिति में इनमें से किसी भीअलग-थलग गतिविधियों में अंतर नहीं देखा गया था। ध्यान देने के लिए, यह वर्णित किया गया है कि Na + D/ A संक्रमण30 को बढ़ा सकता है। हालांकि, इस अवलोकन पर उपयोग किए जाने वाले प्रोटोकॉल में सबमिटोकोंड्रियल कणों (एसएमपी) का उपयोग शामिल था, जबकि हमारा प्रोटोकॉल माइटोकॉन्ड्रियल झिल्ली का उपयोग करता है, जो कि जिम्मेदार प्रभाव30 के लिए आईएमएम में झिल्ली क्षमता की आवश्यकता को उजागर करता है।

यह ध्यान दिया जाना चाहिए कि फ्रीज-पिघलने वाले चक्र डिटर्जेंट के रूप में झिल्ली को भंग नहीं करते हैं, इस प्रकार एकल परिसर और सुपरकॉम्प्लेक्स अभी भी फॉस्फोलिपिड बाईलेयर से जुड़े हुए हैं। यह इस तथ्य से प्रमाणित होता है कि सीआई या सीआईआई के माध्यम से जमे हुए-पिघले हुए माइटोकॉन्ड्रिया ऑक्सीजन की खपत को साइटोक्रोम सी31 की उपस्थिति में मापा जा सकता है। इसके अलावा, यदि सीआईआई + सीआईआईआई गतिविधि पर फ्रीज-पिघलने वाले चक्रों का प्रभाव था, तो यह न केवल "NaCl 10 mM" नमूनों में देखा जाएगा, बल्कि "KCl 10 mM" नमूनों में भी देखा जाएगा। यह या तो माप को असंभव बना देगा (क्योंकि सीआईआई को झिल्ली अपघटन के माध्यम से सीआईआईआई से अलग किया जाएगा) या उस बिंदु पर कम होगा जिसमें के + और ना + के बीच अंतर नहीं देखा जाएगा। हालांकि, जैसा कि चित्र 2 बी में देखा गया है, यह मामला नहीं है। प्रोटोकॉल में KCl के अलावा या तो osmolarity या आयनिक ताकत के संभावित प्रभावों को मापा गतिविधियों पर त्याग करने के लिए डिज़ाइन किया गया है। दोनों मामलों में अंतिम osmolarity, "10 mM KCl" नमूना और "10 mM NaCl" नमूना, बराबर है (116 mEq / L) और नमूनों के बीच एकमात्र अंतर 10 mM K + या 10 mM Na + की उपस्थिति है। फिर भी, यदि बफर से के + धनायनों का प्रभाव पड़ा, तो यह "KCl 10 mM" और "NaCl 10 mM" नमूनों दोनों में प्रकट होगा, जिससे इस तरह के प्रभाव को या तो नमूने में अप्राप्य बना दिया जाएगा।

फॉस्फोलिपिड्स को बांधने के लिए विभिन्न धनायनों की क्षमता में, जो वास्तव में महत्वपूर्ण है वह समन्वय रसायन विज्ञान और प्रत्येक धनायन की आयनिक त्रिज्या है (जैसा कि हमारे मूल पेपर21 में प्रयोगात्मक रूप से हाइलाइट किया गया है, और सैद्धांतिक रूप से बोकमैन एट अल.32 में)। जबकि K + छह की औसत समन्वय संख्या प्रदर्शित करता है, Na + औसत समन्वय संख्या पांच है, जिसके परिणामस्वरूप एक अलग समन्वय जटिल ज्यामिति होती है, जो फॉस्फोलिपिड बाईलेयर33 पर K + और Na + के बहुत अलग प्रभावों में अनुवाद करती है।

यह भी ध्यान दिया जाना चाहिए कि K + और Na + की आयनिक त्रिज्या अलग-अलग हैं। जबकि K+ में 280 pm की आयनिक त्रिज्या है, Na+ में 227 pm की आयनिक त्रिज्या है। यह अंतर सीधे ऋणायनों (या zwitterions) के साथ उनकी बातचीत पर प्रभाव डालता है, क्योंकि एक कम आयनिक त्रिज्या (यानी कम इलेक्ट्रॉन गोले) के परिणामस्वरूप नकारात्मक रूप से चार्ज किए गए अणु के साथ एक मजबूत बातचीत होती है क्योंकि सकारात्मक आयनिक नाभिक अधिक उजागर होता है जैसे कि इसमें अतिरिक्त इलेक्ट्रॉन गोले (यानी उच्च आयनिक त्रिज्या) थे। दरअसल, सभी धनायन संभवतः फॉस्फोलिपिड्स के साथ बातचीत करने में सक्षम हैं; हालांकि, केवल विशिष्ट रासायनिक-भौतिक गुणों वाले लोग ही फॉस्फोलिपिड बाईलेयर पर विशिष्ट प्रभाव डालने में सक्षम होते हैं, जैसे कि ना +

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

लेखकों ने हितों के टकराव की घोषणा नहीं की है।

Acknowledgments

हम तकनीकी सहायता के लिए डॉ आर मार्टिनेज-डी-मेना, एम एम मुनोज़-हर्नांडेज़, ए, डॉ सी जिमेनेज़ और ई आर मार्टिनेज़-जिमेनेज़ को धन्यवाद देते हैं। इस अध्ययन को MICIN द्वारा समर्थित किया गया था: RTI2018-099357-B-I00 और HFSP (RGP0016/2018)। CNIC Instituto de Salud Carlos III (ISCIII), Ministerio de Ciencia, Innovación y Universidades (MCNU) और प्रो CNIC फाउंडेशन द्वारा समर्थित है और एक Severo Ochoa उत्कृष्टता केंद्र (SEV-2015-0505) है। चित्र2 BioRender.com के साथ बनाया गया है।

Materials

Name Company Catalog Number Comments
Antimycin A Sigma-Aldrich A8674
Bovine Serum Albumin (BSA) Sigma-Aldrich 10775835001
Bradford protein assay Bio-Rad 5000001
Cytochrome c from equine heart Sigma-Aldrich C7752
K2HPO4 Sigma-Aldrich P3786
KCl Sigma-Aldrich P3911
Malonic acid Sigma-Aldrich M1296
MgCl2 Sigma-Aldrich M8266
NaCl Sigma-Aldrich S9888
NADH Roche 10107735001
Potassium cyanide Sigma-Aldrich 207810
Rotenone Sigma-Aldrich R8875
Spectra Manager software JASCO version 2
Spectrophotometer UV/VISJASCO
Succinate Sigma-Aldrich 398055

DOWNLOAD MATERIALS LIST

References

  1. Calvo, E., et al. Functional role of respiratory supercomplexes in mice: SCAF1 relevance and segmentation of the Qpool. Science Advances. 6 (26), (2020).
  2. Garcia-Poyatos, C., et al. Scaf1 promotes respiratory supercomplexes and metabolic efficiency in zebrafish. EMBO Reports. 21 (7), 50287 (2020).
  3. Lapuente-Brun, E., et al. Supercomplex assembly determines electron flux in the mitochondrial electron transport chain. Science. 340 (6140), 1567-1570 (2013).
  4. Cogliati, S., et al. Mechanism of super-assembly of respiratory complexes III and IV. Nature. 539 (7630), 579-582 (2016).
  5. Letts, J. A., Fiedorczuk, K., Degliesposti, G., Skehel, M., Sazanov, L. A. Structures of respiratory Supercomplex I+III2 reveal functional and conformational crosstalk. Molecular Cell. 75 (6), 1131-1146 (2019).
  6. Acin-Perez, R., Fernandez-Silva, P., Peleato, M. L., Perez-Martos, A., Enriquez, J. A. Respiratory active mitochondrial supercomplexes. Molecular Cell. 32 (4), 529-539 (2008).
  7. Jeon, T. J., et al. A dynamic substrate pool revealed by cryo-EM of a lipid-preserved respiratory supercomplex. Antioxidants and Redox Signaling. , (2021).
  8. Gu, J., et al. The architecture of the mammalian respirasome. Nature. 537 (7622), 639-643 (2016).
  9. Letts, J. A., Fiedorczuk, K., Sazanov, L. A. The architecture of respiratory supercomplexes. Nature. 537 (7622), 644-648 (2016).
  10. Sousa, J. S., Mills, D. J., Vonck, J., Kuhlbrandt, W. Functional asymmetry and electron flow in the bovine respirasome. Elife. 5, 21290 (2016).
  11. Andreasson, C., Ott, M., Buttner, S. Mitochondria orchestrate proteostatic and metabolic stress responses. EMBO Reports. 20 (10), 47865 (2019).
  12. Berndtsson, J., et al. Respiratory supercomplexes enhance electron transport by decreasing cytochrome c diffusion distance. EMBO Reports. 21 (12), 51015 (2020).
  13. Bianchi, C., Genova, M. L., Parenti Castelli, G., Lenaz, G. The mitochondrial respiratory chain is partially organized in a supercomplex assembly: kinetic evidence using flux control analysis. Journal of Biological Chemistry. 279 (35), 36562-36569 (2004).
  14. Enriquez, J. A. Supramolecular organization of respiratory complexes. Annual Review of Physiology. 78, 533-561 (2016).
  15. Genova, M. L., Lenaz, G. A critical appraisal of the role of respiratory supercomplexes in mitochondria. Biological Chemistry. 394 (5), 631-639 (2013).
  16. Letts, J. A., Sazanov, L. A. Clarifying the supercomplex: the higher-order organization of the mitochondrial electron transport chain. Nature Structural and Molecular Biology. 24 (10), 800-808 (2017).
  17. Milenkovic, D., Blaza, J. N., Larsson, N. G., Hirst, J. The enigma of the respiratory chain supercomplex. Cell Metabolism. 25 (4), 765-776 (2017).
  18. Moe, A., Di Trani, J., Rubinstein, J. L., Brzezinski, P. Cryo-EM structure and kinetics reveal electron transfer by 2D diffusion of cytochrome c in the yeast III-IV respiratory supercomplex. Proceedings of the National Academy of Sciences of the United States of America. 118 (11), 2021157118 (2021).
  19. Szibor, M., et al. Bioenergetic consequences from xenotopic expression of a tunicate AOX in mouse mitochondria: Switch from RET and ROS to FET. Biochimica et Biophysica Acta. Bioenergetics. 1861 (2), 148137 (2020).
  20. Guaras, A., et al. The CoQH2/CoQ ratio serves as a sensor of respiratory chain efficiency. Cell Reports. 15 (1), 197-209 (2016).
  21. Hernansanz-Agustin, P., et al. Na(+) controls hypoxic signalling by the mitochondrial respiratory chain. Nature. 586 (7828), 287-291 (2020).
  22. Vercellino, I., Sazanov, L. A. The assembly, regulation and function of the mitochondrial respiratory chain. Nature Reviews. Molecular Cell Biology. 23 (2), 141-161 (2022).
  23. Acin-Perez, R., Enriquez, J. A. The function of the respiratory supercomplexes: the plasticity model. Biochimica et Biophysica Acta. 1837 (4), 444-450 (2014).
  24. Enriquez, J. A., Lenaz, G. Coenzyme q and the respiratory chain: coenzyme q pool and mitochondrial supercomplexes. Molecular Syndromology. 5 (3-4), 119-140 (2014).
  25. Hernansanz-Agustin, P., Enriquez, J. A. Functional segmentation of CoQ and cyt c pools by respiratory complex superassembly. Free Radical Biology and Medicine. 167, 232-242 (2021).
  26. Fernandez-Vizarra, E., et al. Isolation of mitochondria for biogenetical studies: An update. Mitochondrion. 10 (3), 253-262 (2010).
  27. Cogliati, S., Cabrera-Alarcon, J. L., Enriquez, J. A. Regulation and functional role of the electron transport chain supercomplexes. Biochemical Society Transactions. 49 (6), 2655-2668 (2021).
  28. den Brave, F., Becker, T. Supercomplex formation boosts respiration. EMBO Reports. 21 (12), 51830 (2020).
  29. Perez-Mejias, G., Guerra-Castellano, A., Diaz-Quintana, A., Dela Rosa, M. A., Diaz-Moreno, I. Cytochrome c: Surfing off of the mitochondrial membrane on the tops of Complexes III and IV. Computational and Structural Biotechnology Journal. 17, 654-660 (2019).
  30. Stepanova, A., Valls, A., Galkin, A. Effect of monovalent cations on the kinetics of hypoxic conformational change of mitochondrial complex I. Biochimica et Biophysica Acta. 1847 (10), 1085-1092 (2015).
  31. Acin-Perez, R., et al. A novel approach to measure mitochondrial respiration in frozen biological samples. The EMBO Journal. 39 (13), 104073 (2020).
  32. Böckmann, R. A., Hac, A., Heimburg, T., Grubmüller, H. Effect of sodium chloride on a lipid bilayer. Biophysical Journal. 85 (3), 1647-1655 (2003).
  33. Cordomí, A., Edholm, O., Perez, J. J. Effect of ions on a dipalmitoyl phosphatidylcholine bilayer. a molecular dynamics simulation study. The Journal of Physical Chemistry B. 112 (5), 1397-1408 (2008).

Tags

जैव रसायन अंक 185
आंतरिक माइटोकॉन्ड्रियल झिल्ली Na <sup>+</sup> के लिए संवेदनशीलता आंशिक रूप से विभाजित कार्यात्मक CoQ पूल से पता चलता है
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Hernansanz-Agustín, P.,More

Hernansanz-Agustín, P., Enríquez, J. A. Inner Mitochondrial Membrane Sensitivity to Na+ Reveals Partially Segmented Functional CoQ Pools. J. Vis. Exp. (185), e63729, doi:10.3791/63729 (2022).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter