JoVE   
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Biology

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Neuroscience

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Immunology and Infection

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Clinical and Translational Medicine

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Bioengineering

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Applied Physics

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Chemistry

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Behavior

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Environment

|   

JoVE Science Education

General Laboratory Techniques

You do not have subscription access to videos in this collection. Learn more about access.

Basic Methods in Cellular and Molecular Biology

You do not have subscription access to videos in this collection. Learn more about access.

Model Organisms I

You do not have subscription access to videos in this collection. Learn more about access.

Model Organisms II

You have trial access to videos in this collection until May 31, 2014.

 JoVE Biology

Silicon Microchips for Manipulating Cell-cell Interaction

1, 1

1Laboratory for Multiscale Regenerative Technologies, MIT - Massachusetts Institute of Technology

Article
    Downloads Comments Metrics

    You must be subscribed to JoVE to access this content.

    This article is a part of   JoVE Biology. If you think this article would be useful for your research, please recommend JoVE to your institution's librarian.

    Recommend JoVE to Your Librarian

    Current Access Through Your IP Address

    You do not have access to any JoVE content through your current IP address.

    IP: 54.234.60.133, User IP: 54.234.60.133, User IP Hex: 921320581

    Current Access Through Your Registered Email Address

    You aren't signed into JoVE. If your institution subscribes to JoVE, please or create an account with your institutional email address to access this content.

     

    Summary

    This article describes an experimental approach for dynamic regulation of cell-cell interactions between adherent cells on a micrometer scale. Manipulation of intercellular communication between hepatocytes and stromal cell is demonstrated. The developed platform enables investigation of cell-cell interactions in a variety of biological processes, including development and pathogenesis.

    Date Published: 8/30/2007, Issue 7; doi: 10.3791/268

    Cite this Article

    Hui, E. E., Bhatia, S. N. Silicon Microchips for Manipulating Cell-cell Interaction. J. Vis. Exp. (7), e268, doi:10.3791/268 (2007).

    Abstract

    The role of the cellular microenvironment is recognized as crucial in determining cell fate and function in virtually all mammalian tissues from development to malignant transformation.  In particular, interaction with neighboring stroma has been implicated in a plethora of biological phenomena; however, conventional techniques limit the ability to interrogate the spatial and dynamic elements of such interactions.

    In Micromechanical Reconfigurable Culture (RC), we employ a micromachined silicon substrate with moving parts to dynamically control cell-cell interactions through mechanical repositioning. Previously, this method has been applied to investigate intercellular communication in co-cultures of hepatocytes and non-parenchymal cells, demonstrating time-dependent interactions and a limited range for soluble signaling 1.

    Here, we describe in detail the preparation and use of the RC system. We begin by demonstrating the handling of the device parts using tweezers, including actuating between the gap and contact configurations (cell populations separated by a narrow 80-µm gap, or in direct intimate contact). Next, we detail the process of preparing the substrates for culture, and the multi-step cell seeding process required for obtaining confluent cell monolayers. Using live microscopy, we then illustrate real-time manipulation of cells between the different possible experimental configurations. Finally, we demonstrate the steps required in order to regenerate the device surface for reuse: toluene and piranha cleaning, polystyrene coating, and oxygen plasma treatment.

    Protocol

    Preparation of cell cultures:

    1. Start with silicon parts coated with plasma-treated polystyrene.
    2. Coat parts with appropriate extracellular matrix proteins to support attachment of desired cell type. For hepatocytes, incubate in 50 g/ml Collagen-1 solution at 37°C for 45 min. For 3T3 fibroblasts, no matrix is needed.
    3. Lock parts with complementary parts in contact configuration.
    4. Soak in 70% ethanol for a minimum of 10 min to sterilize. Rinse 2x in ddH2O, and 1x in cell culture media.
    5. Seed cells at a concentration of 500,000 cells/ml in the appropriate culture medium. Use 1 ml in each well of a 12-well culture plate.
    6. Incubate for 1 hr, shaking every 15 min to re-suspend cells evenly.
    7. If a confluent monolayer has not been achieved after 1 hr, aspirate the cell suspension and repeat seeding with a fresh suspension. Repeat until the desired cell density has been achieved.
    8. Remove the complementary parts. Transfer parts to fresh wells and incubate overnight to allow cells to adhere and spread fully.
    9. Form co-cultures by locking appropriate parts into either the gap or contact configuration. The configuration may be changed at any desired point during culture.
    10. When changing media, take care to leave cells dry for as little time as possible, preferably just a second or two. Draw out fluid with one hand and immediately replace media using the other hand.

    Processing silicon parts for reuse:

    1. Strip cells by soaking in bleach and rinsing with water.
    2. Allow parts to dry completely. Soak in toluene for 2 h to strip polystyrene.
    3. Clean in piranha solution (1:2 H2O2:H2SO4) heated to 120°C.
    4. Rinse for 15 min under a continuous flow of ddH2O. If you are not going to deposit polystyrene immediately, store the parts in water.
    5. Dissolve polystyrene in toluene at 100 mg/ml. Vortex in polypropylene conical for about 1 hr, or until fully dissolved. A little more than 1 ml of solution is required for every 10 parts.
    6. Spin coat polystyrene solution on individual silicon parts at 2,400 rpm for 30 sec.
    7. Bake for at least 5 h at 120°C.
    8. Treat with oxygen plasma (200 mTorr, 200 W) for 1 min.

    Subscription Required. Please recommend JoVE to your librarian.

    Discussion

    This system is unique in that it enables the spatial organization of tissue to be dynamically manipulated at the cellular level. Consequently, this device has enabled a number of novel biological experiments, spanning topics such as intercellular signaling dynamics, contact-mediated versus soluble signaling, cell fate decisions, toxicology, and cellular crosstalk. This device should be widely generalizable since the culture substrate is standard tissue culture plastic, and the system is compatible with standard culture methods and assays. Hence, we believe that this platform will be of broad interest as a tool for studying cell-cell interaction among many different cells and tissues.

    Subscription Required. Please recommend JoVE to your librarian.

    Disclosures

    The authors have nothing to disclose.

    Acknowledgements

    The authors thank Salman Khetani, Jared Allen, Chris Flaim, and Austin Derfus for helpful discussions during the process of designing this device. This work was supported by the National Science Foundation Faculty Early Career Development Program, National Institutes of Health/National Institute of Diabetes and Digestive and Kidney Diseases, and the David and Lucile Packard Foundation. E.E.H. was supported by a Ruth L. Kirschstein National Research Service Award.

    Materials

    Name Type Company Catalog Number Comments
    Silicon Comb Substrates Tool N/A N/A Parts are available for collaborative research projects. Please contact Elliot Hui (eehui @ alum . mit . edu) or Sangeeta Bhatia (sbhatia @ mit . edu).

    References

    1. Hui EE and Bhatia SN (2007). Micromechanical control of cell-cell interactions. Proceedings of the National Academy of Sciences, 104, 5722-5726.

    2. Bhatia SN, Balis UJ, Yarmush ML and Toner M (1999). Effect of cell–cell interactions in preservation of cellular phenotype: cocultivation of hepatocytes and nonparenchymal cells. The FASEB Journal, 13, 1883-1900.

    3. El-Ali J, Sorger PK, Jensen KF (2006). Cells on Chips. Nature, 442, 403 - 411.

    Comments

    4 Comments

    the tool look very interesting, expecially for us: we work on neural stem cells nad the effet of the niche on their proliferation and differentiation. Would it be possible to collaborate and test it?
    Kind regard
    Reply

    Posted by: AnonymousSeptember 12, 2007, 3:48 AM

    Thanks for your comments, Tiziana. If you would like to discuss ideas for collaboration, please contact me at eehui @ mit . edu
    Reply

    Posted by: AnonymousSeptember 19, 2007, 3:09 PM

    There was no sound with the video
    Reply

    Posted by: AnonymousSeptember 19, 2007, 4:18 PM

    Actually i am working in celluler morphology.Now i am studing to cell to cell interaction in Normal and disease condition.If you healp me,then i will very glad.If you interested this part,then i will do collaborate research.   thank you priti Prasanna maity Research schoolar
    Reply

    Posted by: AnonymousJuly 29, 2008, 9:11 AM

    Post a Question / Comment / Request

    You must be signed in to post a comment. Please or create an account.

    Metrics

    Waiting
    simple hit counter