资料来源:蒂尔德·安徒森1号,罗尔夫·卢德1
1临床科学隆德系,感染医学系,生物医学中心,隆德大学,221 00 隆德,瑞典
感染原核生物的病毒,称为噬菌体或简称噬菌体,在20世纪初由Twort(1)和d’Hérelle(2)独立发现。自那时以来,噬菌体因其治疗价值(3)及其对人类(4)以及全球生态系统(5)的影响而得到广泛认可。目前的关切促使人们重新关注使用噬菌体作为现代抗生素替代治疗传染病的方法(6)。基本上,所有的噬菌体研究都依赖于纯化和量化病毒的能力,也称为病毒性小子。最初描述在1952年,这是斑块测定的目的(7)。几十年后,多项技术进步,斑块测定仍然是确定病毒性牙点(8)的最可靠的方法之一。
噬菌体通过将遗传物质注入宿主细胞,劫持机器来生产新的噬菌体颗粒,并最终导致宿主通过细胞解释释放许多后代病毒。由于其微小的大小,噬菌体不能只用光显微镜观察;因此,扫描电子显微镜是必需的(图1)。此外,噬菌体不能像细菌一样在营养琼脂板上培养,因为它们需要宿主细胞来捕食。
图1:噬菌体形态,这里以大肠杆菌噬菌体为例子,可以用扫描电子显微镜进行研究。大多数噬菌体属于考多病毒(尾噬菌体)。这种特殊的噬菌体有一个很短的尾巴结构和一个食道头,把它放在波多病毒家族。
斑块测定(图2)基于将宿主细胞(优先用于对数相生长)并入培养基。这创造了一个密集,浑浊的细菌层,能够维持病毒生长。分离的噬菌体随后可以感染、在一个细胞内复制和分莱。每个分莱细胞,多个相邻的细胞立即被感染。在几个周期中,在原本浑浊的板块中可以观察到一个清晰的区域(斑块),表明最初是单个噬菌体粒子的存在。因此,样品每体积(即PFU/mL)的斑块形成单位数量可以从产生的斑块数量中确定。
图2:检测斑块形成单元(PFU)是确定样品中噬菌体数量的常见方法。(A)无菌培养皿的基底覆盖着适当的固体营养介质,然后是软培养基、易感宿主细胞的混合物和原噬菌体样本的稀释。请注意,在某些情况下,噬菌体悬浮液也可以均匀地分布在已经凝固的软琼脂表面。(B)宿主细菌的生长在琼脂层形成细胞草坪。噬菌体复制产生由宿主细胞解致引起的透明区域或斑块。
图3:PFU测试结果显示,噬菌体产生的多斑块。由于易感宿主细胞的赖清,斑块可被视为细菌草坪上的清除区,要么具有(A)完全清除,要么(B)由产生耐药细菌(或可能是由耐温噬菌体)引起的部分再生致源循环)。
除了以前描述的溶血生长外,某些温带噬菌体可以采用所谓的溶源性生命周期。在地合体中,病毒通过将其遗传物质纳入宿主细胞(9)的基因组而假定为潜伏状态,这通常对进一步的噬菌体感染具有抵抗力。这有时通过斑块的轻微云彩(图3B)来揭示。然而,值得注意的是,斑块也可能显得模糊,由于细菌的再生长,已经进化了抵抗噬菌体,独立于以前的噬菌体感染。
病毒可以附着或吸附,只有有限的宿主细菌(10)。宿主范围受到细胞内抗病毒策略(如CRISPR-Cas系统(11)的进一步限制。细菌亚群对特定噬菌体表现出的抗药性/敏感性历来被用来将细菌菌株分类为不同的噬菌体类型(图4)。虽然这种方法的有效性现已被新的测序技术所超越,但噬菌体类型仍然可以提供有关细菌-噬菌体相互作用的宝贵信息,例如,促进为临床使用设计噬菌体鸡尾酒.
图4:不同细菌菌株的噬菌体敏感性。软琼脂板与可爱痤疮菌株(A)AD27和(B)AD35,被发现与21种不同的C.痤疮噬菌体。只有噬菌体11能够感染和杀死AD27,而AD35菌株对所有噬菌体表现出敏感性。这种技术,称为噬菌体类型,可用于根据噬菌体易感性将细菌种类和菌株分成不同的亚群。
1. 设置
2. 议定书
3. 数据分析和结果
噬菌体,也称为噬菌体,是专门感染细菌的病毒,我们可以确认它们的存在,并使用一种称为斑块测定的工具对其进行量化。噬菌体首先附着在细菌细胞壁上并注射其遗传物质,从而感染其易感宿主。然后,他们劫持细胞的生物合成机械来复制他们的DNA并产生许多后代噬菌体颗粒,然后通过解说和杀死宿主细胞释放这些粒子。
这种溶性活性是广泛使用的噬菌体枚举技术的基础,称为斑块测定或双琼脂层测定。在这里,噬菌体混合物首先在含有低浓度琼脂的熔融营养汤中制备。混合物中使用的所有细菌都应在生长的日志阶段保持活力并积极分裂,这将确保大部分细菌是活的,并能够在斑块周围形成密集的草坪。接下来,这种熔融细菌-噬菌体琼脂混合物分布在更固体,浓缩的琼脂营养介质,已经凝固在培养皿。在室温下孵育时,低浓度的琼脂-噬菌体汤也会凝固成柔软的琼脂覆盖物。
在这里,细菌细胞可以从底层获得额外的营养,并应迅速繁殖,产生细菌的汇流草坪。然而,由于噬菌体颗粒也存在于软层中,这些颗粒会感染和复制细菌内的遗传物质,最终导致细胞变热,从而释放多个后代。这些噬菌体后代然后感染邻近的细胞,因为细菌-噬菌层的半固态限制其运动到距离较远的宿主细胞。这种感染和莱沙循环持续多轮,在局部地区杀死大量细菌。邻近细胞被破坏的效果是产生一个圆形的透明区域,称为斑块,肉眼可以看到,有效地放大噬菌体的细菌溶酶活性,并使其枚举。
培养皿上的斑块数量称为斑块形成单位,或PFUs,如果初始噬菌体浓度足够稀释,应直接对应于原始样品中感染性噬菌体颗粒的数量。该技术还可用于表斑块形态的表征,帮助识别噬菌体类型,或分离噬菌体突变体。在本实验中,您将学习如何以大肠杆菌的T7噬菌体为例,为枚举噬菌体执行斑块测定。
首先,确定适合培养宿主细菌细胞和噬菌体的介质。在这里,乳原肉,或LB培养,用于培养大肠杆菌和T7噬菌体。接下来,取三个干净的玻璃瓶,并标记他们与媒体,名称,然后第一个作为LB-Broth,第二个作为LB-底部阿加,第三作为LB-Top阿加。现在,在三组中称量四克预配方的 LB 粉末,然后将一套称重干燥介质转移到每个瓶子中。将200毫升水加入第一瓶。使用磁性搅拌棒混合内容物。
然后,使用pH计和不断搅拌,通过添加氢氧化钠或盐酸,使最终pH达到7.4。对其余两个瓶子也重复加水和pH调整。现在,称量三克的琼脂粉,并添加到第二瓶,使一个1.5%的底部琼脂。最后,称量1。2 克琼脂,并添加到第三瓶,使 0.6% LB 顶部琼脂。瓶中的汤条件不需要添加琼脂。将瓶子半紧封盖,然后通过在121摄氏度的高压灭菌器对介质进行消毒20分钟。完成后,从高压灭菌器中取出介质瓶,并立即拧紧瓶盖以将其完全关闭,以防止污染。将 LB-Broth 和 LB-Top Agar 介质放在长凳上,以便日后使用。将 LB-底部 Agar 放在预设约 45 摄氏度的水浴中冷却。
当 LB-底部琼脂达到约 45 摄氏度时,将其转移到工作台上。接下来,使用 70 % 异醇对工作区进行消毒。接下来,在熔融底部琼脂中加入450微升无菌一摩尔氯化钙,最终浓度为2.25毫摩尔。轻轻旋转瓶子混合。然后,设置七个干净的培养皿。将每道菜的底部贴上介质名称和准备日期的标签。然后,将 15 毫升的底部琼脂倒入七个培养皿中。让板在室温下设置几个小时或过夜。一旦设置,培养板可以存储在四摄氏度,如果需要几天,倒置,以尽量减少冷凝。在测定前一小时将培养皿从4摄氏度的冰箱转移到37摄氏度的培养箱。
在预成型前一天,应培养大肠杆菌。在这里,10微升大肠杆菌培养被接种成10毫升的LB-Broth。将细菌放在160RPM下设置为37摄氏度的摇动培养箱中过夜。然后,在测定当天,从培养箱中取出细菌培养物。播种新鲜10毫升的新鲜LB汤与0.5毫升的过夜文化。将这些细胞置于160RPM下,生长成37摄氏度的摇动培养箱。接下来,使用分光光度计检查此培养体何时达到对数相增长,光学密度为 0.5 到 0.7。一旦OD达到这个水平,通过将细胞培养转移到工作台来停止孵育。它们现在可用于噬菌体覆盖测定。
噬菌体在不同噬菌体类型和样品之间可能呈指数变化。因此,为了有效地计数它们,它们应该被稀释,以产生广泛的噬菌体浓度。在测定当天,采用10倍稀释技术,产生一系列从十分之一到百万分之一浓度不等的噬菌体稀释剂。为了获得统计显著性和准确性的数据,在三元化中执行连续稀释。
接下来,使用微波熔化凝固的 LB-top 琼脂。然后,将其放入预设在 45 摄氏度的水浴中一小时。一小时后,从孵化器收集含有底部琼脂层的培养皿。用噬菌体浓度和测定日期标记盘子。然后,设置七个干净的试管。用串行噬菌体稀释编号标记每个试管,并指定一个作为控制。
当 LB 顶琼脂达到 45 摄氏度时,将其转移到工作台。现在,在200毫升的琼脂中加入450微升的一个摩尔氯化钙,最终浓度为2.25毫摩尔。轻轻旋转瓶子混合。接下来,在无菌锥形管中加入35毫升的LB顶琼脂和4毫升的细菌悬浮液。轻轻旋转以均匀分布细胞,但避免晃动,以防止发泡。
现在,将五毫升的这种细菌顶琼脂混合到七个试管中。然后,将100微升的连续稀释噬菌体样品和控制介质(应为无噬菌体)转移到贴有尊重标签的试管中。轻轻旋转混合物,以确保正确混合。轻轻地将五毫升噬菌体混合物转移到各自的Petri板上。通过轻轻旋转 Petri 板,均匀地将混合物均匀地铺过整个表面。
一旦所有 Petri 板都与混合层分层,通过在室温下孵育 15 分钟,使顶层凝固。完成这些步骤后,使用剩余的两组噬菌体稀释法重复第二套和第三套培养皿的过程。用副膜密封每道菜,并在室温下孵育15分钟。将培养板倒置在适当的温度下 24 小时或直到斑块形成。在这里,板被放置在37摄氏度的培养箱一天,一个刺激生长条件的大肠杆菌和T7噬菌体。
根据细菌种类、孵育条件和介质的选择,在孵育一至五天后会出现斑块。在这里,在37摄氏度的孵育一天后,斑块就可见了。首先检查标有控制的板,并确保这些板块中未形成斑块,因为这将表示病毒污染。要确定原始样品中的噬菌体,请首先从包含最稀释的噬菌体样本的板开始,在不取下盖子的情况下对斑块进行计数,并标记它们以指示哪些已经计数。对每组每个板重复计数。有些盘子的斑块可能太多或太少,无法计数。将 10 到 150 视为理想的斑块计数。
接下来,生成一个表,列出不同稀释和复制的斑块数值。然后,计算包含理想斑块计数数的稀释板的平均斑块数值。在此示例中,这些是 10 到负 3 和 10 到负 4 稀释板中形成的斑块的平均数量。现在,通过将获得的均值斑块值除以相应的噬菌体稀释因子来调整噬菌体稀释系数。在这里,形成到10到负3和10到负4稀释板的平均斑块数,被它们各自的稀释因子除以,以获得100微升噬菌体混合物中的斑块形成单位(PFUs)的数量。要将该值转换为每毫升的 PFU,请将生成的值乘以 10,因为噬菌体覆盖制备步骤中仅使用了 100 微升的噬菌体稀释混合,从而产生 10 的额外稀释系数。最后,计算从不同稀释板中获得的值的平均值。这将给出每毫升 PFUS 的平均数量。PFUs 的数量对应于原始样本中感染性噬菌体颗粒的数量。
尽管多项技术进步,斑块测定仍然是测定病毒性牙酸盐(作为PFU)的黄金标准,对纯噬菌体种群的分离至关重要。易感宿主细胞在两层琼脂板的上部涂层中培养,形成均匀的床,实现病毒复制。在溶质生命周期中分离的噬菌体感染细胞,在细胞内复制并最终将其解伤的初始事件太小,无法观察。然而,释放的病毒会感染相邻的细胞,随后产生一个清除区,或斑块,表示存在单个PFU。
Bacteriophages, also called phages, are viruses that specifically infect bacteria and we can confirm their presence and quantify them using a tool called the plaque assay. Bacteriophages infect their susceptible hosts by first attaching to the bacterial cell wall and injecting their genetic material. Then, they hijack the cell’s biosynthetic machinery to replicate their DNA and produce numerous progeny phage particles, which they then release by lysing and killing the host cell.
This lytic activity is the basis of a widely used phage enumerating technique known as the plaque assay or double agar layer assay. Here, a bacteriophage mix is first prepared in a molten nutrient broth containing low concentration agar. All bacteria used in the mix should be alive and actively dividing in the log phase of their growth, which will ensure that a large percentage of the bacteria are viable and able to form a dense lawn around the plaques. Next, this molten bacterial-phage agar mix is spread over a more solid, concentrated agar nutrient medium which is already solidified on a Petri dish. On incubation at room temperature, the low concentration agar-phage-bacteria broth also solidifies to form a soft agar overlay.
Here, the bacterial cells can derive additional nutrients from the bottom layer and should rapidly multiply to produce a confluent lawn of bacteria. However, as phage particles are also present in the soft layer, these will infect and replicate their genetic material within the bacteria, culminating in cell lysis, which releases multiple progeny. These phage progeny then infect the neighboring cells, as the semi-solid state of the bacteria-phage layer restricts their movement to more distantly located host cells. This cycle of infection and lysis continues over multiple rounds, killing a large number of bacteria in a localized area. The effect of the neighboring cells being destroyed, is to produce a single circular clear zone, called a plaque, which can be seen by the naked eye, effectively amplifying the bacteria lytic activity of the phage and enabling their enumeration.
The number of plaques on a Petri dish are referred to as Plaque-Forming Units, or PFUs, and, providing the initial bacteriophage concentration was sufficiently dilute, should directly correspond to the number of infective phage particles in the original sample. This technique can also be used for characterization of plaque morphology, to aid in identification of phage types, or to isolate phage mutants. In this lab, you will learn how to perform the plaque assay for enumerating phages, using the T7 phage of E. coli as an example.
First, identify a suitable medium for the culturing of the host bacterial cells and the bacteriophage. Here lysogeny broth, or LB medium, was used to culture E. coli and the T7 phage. Next, take three clean glass bottles and label them with media, name, and then the first as LB-Broth, the second as LB-Bottom Agar, and the third as LB-Top Agar. Now, weigh out four grams of pre-formulated LB powder in three sets and then transfer one set of weighed dried media into each bottle. Add 200 milliliters of water to the first bottle. Mix the contents using a magnetic stir bar.
Then, using a pH meter and constant stirring, bring the final pH to 7.4 through the addition of sodium hydroxide or hydrochloric acid. Repeat the water addition and pH adjustment for the other two remaining bottles, as well. Now, weigh out three grams of agar powder and add it to the second bottle to make a 1.5 % bottom agar. Finally, weigh 1. 2 grams of agar and add it to the third bottle to make the .6 % LB top agar. The broth condition in bottle one does not need an agar addition. Cap the bottle semi-tightly and then, sterilize the media by autoclaving at 121 degrees Celsius for 20 minutes. Once complete, remove the media bottles from the autoclave and immediately twist the bottle caps to close them fully to prevent contamination. Keep the LB-Broth and LB-Top Agar media on the bench for later use. Place the LB-Bottom Agar to cool in a water bath that is preset to approximately 45 degrees Celsius.
When the LB-Bottom agar reaches approximately 45 degrees Celsius, transfer it to the work bench. Next, sterilize the workspace using 70 % ethenol. Next, add 450 microliters of sterile one molar calcium chloride to the molten bottom agar to make a final concentration of 2.25 millimolar. Gently swirl the bottle to mix. Then, set out seven clean Petri dishes. Label each dish on the bottom with the media name and preparation date. Then, pour 15 milliliters of the bottom agar into each of the seven Petri dishes. Allow the plates to set for a few hours or overnight at room temperature. Once set, the culture plates can be stored at four degrees Celsius for several days if needed, upside down to minimize condensation. Transfer the Petri dishes from the four degrees Celsius refrigerator to a 37 degrees Celsius incubator one hour before the assay.
The day before the assay is to be preformed, the E. coli should be cultured. Here, 10 microliters of E. coli culture was inoculated into 10 milliliters of LB-Broth. Place the bacteria to grow overnight in a shaking incubator set to 37 degrees Celsius at 160 RPM. Then, on the day of the assay, remove the bacterial culture from the incubator. Seed a fresh 10 milliliters of fresh LB broth with 0.5 milliliters of the overnight culture. Place these cells to grow into a shaking incubator set to 37 degrees Celsius at 160 RPM. Next, use a spectrophotometer to check when this culture reaches log phase growth, indicated by an optical density of 0.5 to 0.7. Once the OD reaches this level, stop the incubation by transferring the cell culture to the bench. They are now ready to be used for phage overlay assay.
Phage titers can vary exponentially across different phage types and samples. So in order to count them effectively, they should be diluted to generate a wide range of phage concentrations. On the day of the assay, generate a series of phage dilutions ranging from one tenth to one millionth concentrations, following a 10-fold dilution technique. To obtain statistically significant and accurate data, perform the serial dilution in triplicate.
Next, melt the solidified LB-top agar using a microwave. Then, place it in a water bath that is preset at 45 degrees Celsius for one hour. After one hour, collect the Petri dishes containing the bottom agar layer from the incubator. Label the plates with phage concentration and assay date. Then, set out seven clean test tubes. Label each test tube with the serial phage dilution number and designate one as control.
When the LB-top agar reaches 45 degrees Celsius, transfer it to the working bench. Now, add 450 microliters of one molar calcium chloride to the 200 milliliter agar to make a final concentration of 2.25 millimolar. Gently swirl the bottle to mix. Next, add 35 milliliters of LB-top agar and four milliliters of bacterial suspension to a sterile conical tube. Gently swirl to evenly distribute the cells but avoid shaking to prevent foaming.
Now, aliquot five milliliters of this bacteria- top agar mix to each of the seven test tubes. Then, transfer 100 microliters of the serially diluted bacteriophage samples and control media, which should be simply media with no bacteriophage, to the respectfully labeled test tubes. Swirl the mixture gently to ensure proper mixing. Gently transfer five milliliters of bacteriophage mix onto the respective Petri plate. Evenly spread the mix throughout the whole surface by gently swirling the Petri plate.
Once all of the Petri plates are layered with the mix, allow solidification of the top layer by incubating at room temperature for 15 minutes. After completion of these steps, repeat the process for the second and then the third sets of the Petri dishes using the remaining two sets of phage dilutions. Seal each dish with parafilm and incubate at room temperature for 15 minutes. Place the culture plate upside down at a suitable temperature for 24 hours or until plaques develop. Here, plates were placed in a 37 degrees Celsius incubator for one day, a stimulating growth condition for E. coli and the T7 phage.
Plaques will appear after one to five days of incubation, depending on the bacterial species, incubation conditions, and the choice of medium. Here, plaques were visible after one day of incubation at 37 degrees Celsius. Begin by checking the plates marked control and ensure that no plaques were formed in these plates, as this would indicate viral contamination. To determine the phage titer in the original sample, start with the plates containing the most diluted phage sample first and count the plaques without removing the lids, marking them to indicate which ones have already been counted. Repeat the counting for each plate in every set. Some plates might have too many or too few plaques to be counted. Consider 10 to 150 as an ideal plaque count.
Next, generate a table listing the plaque number values for the different dilutions and replicates. Then, calculate the mean plaque number values for the dilution plates that contained the ideal number of plaque counts. In this example, these were the average number of plaques formed in the 10 to the minus three and 10 to the minus four dilution plates. Now, adjust for phage dilution factor by dividing the obtained mean plaque values by the respective phage dilution factors. Here, the average number of plaques formed to the 10 to the minus three and 10 to the minus four dilution plates, were divided by their respective dilution factors to obtain the number of plaque forming units, or PFUs, in 100 microliters of phage mixture. To convert the value to PFU per milliliter, multiply the generated values by 10, as only 100 microliters of phage dilution mix was used during the bacteriophage overlay preparation step, producing an additional dilution factor of 10. Finally, calculate the average of the values obtained from the different dilution plates. This will give the average number of PFUs per milliliter. The number of PFUs corresponds to the number of infective phage particles in the original sample.
Related Videos
Microbiology
127.4K 浏览
Microbiology
312.4K 浏览
Microbiology
131.5K 浏览
Microbiology
165.3K 浏览
Microbiology
187.2K 浏览
Microbiology
291.0K 浏览
Microbiology
93.3K 浏览
Microbiology
361.9K 浏览
Microbiology
185.1K 浏览
Microbiology
86.0K 浏览
Microbiology
37.9K 浏览
Microbiology
28.8K 浏览