趋化性是细胞或生物响应化学刺激的运动过程。自然界中,趋化性对于生物感应并靠近食物源和远离可能有毒害的刺激非常重要。趋化性在细胞水平也同样重要。比如趋化性对于受精前精细胞朝卵细胞的游动必不可少。在实验室里经常用线虫做趋化性实验,我们知道线虫天生会朝土壤的食物源运动但是远离避开毒素如重金属,低pH物质和去垢剂。本短片演示了如何操作趋化性实验。包括准备趋化板和线虫,操作测验和分析数据。然后,我们讨论了如何在线虫中应用趋化性作为工具来研究学习和记忆,嗅觉适应和类似阿尔茨海默氏病的神经性疾病。线虫的趋化性实验对于研究许多生物进程的细胞和遗传机制有着无限的价值。它能帮助我们更好地了解人类生物学,发育生物学和疾病。
细胞或生物对化学刺激做出反应的运动行为称之为化学趋向性。本短片中,我们将学习如果用线虫操作化学趋向性实验。我们还将讨论如何利用线虫的化学趋向性实验来研究学习和记忆,嗅觉适应以及阿尔茨海默氏病。
让我们先来讨论两种不同的化学趋向性类型。靠近化学刺激方向运动称之为正向化学趋向性。 反之,远离化学刺激方向称之为反向化学趋向性,使得生物避开有害化学物。
化学趋向性可以是在生物个体水平,如生物朝食物源运动。化学趋向性也可以是生物体内的细胞水平。比如免疫细胞朝病原物或炎症点运动。又如精细胞朝卵细胞运动是其对卵细胞释放的化学诱剂的响应。化学趋向性也是发育中的重要过程,发育个体中的细胞会受化学刺激响应而迁移,从而形成组织和器官 。
自然界里土壤中的线虫,其化学趋向性对于发现和靠近它们的主要食物-细菌尤为重要。 相反,线虫会避开重金属,低pH物质和对生物有毒的去垢剂。
化学趋向性实验通常要从制备化学趋向性平板开始。用标尺和记号笔将一含有线虫培养基的5厘米平板等分为四个扇形。然后以中央原点为中心划一个半径0.5厘米的圆圈。 这将是线虫开始运动的起点。在每个扇形上标注一点使之与中央原点等距并且彼此间等距。
在准备用于实验的线虫时,使用发育同步的幼龄成虫很重要,因为这样可以消除因发育阶段不同而引起的人为差异。 线虫发育同步后,在含有幼龄成虫的线虫平板上加2ml S基本缓冲液来收集它们。旋转倾侧将线虫从平板上洗脱下来。
然后,将线虫与S基本缓冲液的混合物用移液管转移到离心管。 为洗涤线虫,短暂离心后弃去上清,再加入1ml S基本缓冲液到线虫。反转离心管,再重复洗涤两次。洗涤完成后,弃去大部分缓冲液,仅留取约100 微升。然后,加入2微升 线虫与S 基本缓冲液的混合物到线虫平板。在显微镜下计数线虫数目,以每 2 微升混合物中含50到250个线虫较为理想。
现在准备好了趋化板和线虫,我们可以开始化学趋向性实验了。 首先将测试溶液与0.5M的叠氮钠等体积混合。 叠氮钠为一种麻醉剂可通过接触麻痹线虫。将对照溶液做相同处理。然后,转移2微升 的线虫与S基本缓冲液的混合物到趋化板的中央区域。 再加2微升测试溶液或对照溶液到趋化板上相应的标记点上。当测试溶液和对照溶液被吸收后,盖上盖子,翻转平板,定时一小时。
趋化板上的线虫响应化学刺激一小时后,就可以分析数据了。计数每个扇形上的线虫数目。如果线虫被测试溶液吸引, 其相应扇形上的线虫数目将高于对照。 如果线虫对化学物无反应,每个扇形上的线虫数目应该相同。
通过这些数据计算趋化指数,即测试溶液扇形上的线虫数目减去对照溶液扇形的线虫数目,然后除以总线虫数目。趋化指数接近+1的时候说明是吸引,当趋化指数接近-1的时候表明排斥。
现在我们知道了如何准备趋化性实验。让我们再来看看如何应用这些实验来解答科学问题。
线虫趋化性实验的其中一个用途是用来研究学习和记忆。例如,能让线虫将某种化学刺激与食物源相关联起来。将喂饱了的线虫饥饿一小时,然后让它们对食物和化学物如丁酮建立条件反射。
接下来,线虫被放到一个只有食物没有丁酮的平板上。通过一个趋化性实验可以检测线虫是否学习到将食物和丁酮关联起来。对这个实验可以做很多方面的修改来检测其他的信息,比如哪些基因和神经元对于学习和记忆比较重要。
嗅觉适应是指感觉神经元对某种刺激的反应随时间减弱的一种现象,它使得生物体去响应其他也许更重要的刺激。 例如,让野生型线虫接触一种气味一段时间后,嗅觉适应会使它在趋化性实验中对该气味无任何反应,不再受吸引。因此,可通过高通量遗传筛选发现嗅觉适应的遗传调控。如egl-4基因。另外使用表达荧光标记蛋白的转基因线虫,可以让我们时刻观察到它们在嗅觉适应中位置的改变。
最后,线虫的趋化性实验可以用于研究阿尔茨海默氏病。科学家能在线虫神经元细胞里面表达荧光标记的人β淀粉样肽,它是阿尔茨海默氏病的标志分子。有趣的是,趋化性实验发现,与对照组相比,在其中一类神经元中表达β淀粉样肽的线虫对化学诱剂的趋化性降低。该实验的许多方面可以进行改动,包括在其他神经元群体或组织中表达 β淀粉样肽,或者检测是否存在某种化合物能缓和β淀粉样肽表达的效应等,这些终将会给我们带来该疾病的可能治疗手段。
您刚观看的是JOVE的线虫趋化性介绍。首先我们定义了什么是趋化性和为何它在自然界对生物和细胞重要。 然后我们演示了如何用线虫做趋化性实验。最后我们讨论了如何利用趋化性来研究学习和记忆,嗅觉适应和阿尔茨海默氏病。感谢您的观看!
The movement of a cell or organism in response to a chemical stimulus is a behavior called chemotaxis. In this video, we will learn how to perform a chemotaxis assay using the nematode, C. elegans. We will also discuss how chemotaxis assays in C. elegans are applied to study learning and memory, olfactory adaptation, and Alzheimer’s disease.
Let’s first discuss two different types of chemotaxis. Movement toward a chemical stimulus is called positive chemotaxis. In contrast, movement away from a chemical stimulus is called negative chemotaxis, allowing organisms to move away from harmful chemicals.
Chemotaxis can occur at the organismal level, as organisms move toward a food source. Chemotaxis also takes place at the cellular level, within organisms. For example, immune cells migrate toward pathogens or sites of inflammation. In another example, sperm cells move toward the egg in response to a chemo-attractant released by the egg. Chemotaxis is also an important process during development, in which cells migrate in response to a chemical stimulus, forming tissues and organs in the developing organism.
For wild, soil-dwelling C. elegans, chemotaxis is important for detection and movement toward bacteria, their main food source. In contrast, C. elegans are repelled by heavy metals, substances with a low pH, and detergents, which are toxic to the organism.
Chemotaxis assays typically begin by preparing chemotaxis plates. Using a ruler and a marker, divide a 5 cm plate with nematode growth medium into four equal quadrants. Then, draw a circle with a 0.5 cm radius around the center of the quadrant. This will be the starting point for the worms. Mark and label a point in each quadrant, such that each point is equidistant from the center, and from each other.
When preparing worms for the assay, it’s critical to use age synchronized young adult worms so that differences in chemotaxis are not an artifact of the developmental stage. Once worms are synchronized, collect them by first pipetting 2 ml of S-basal buffer onto a plate containing young adults. Swirl and tilt the dish to wash the worms from the plate.
Next, pipette the worm/S-basal solution into a microcentrifuge tube. Wash the worms by briefly centrifuging the worm/S-basal solution, removing the supernatant, and adding another milliliter of S-basal solution to the worm pellet. Invert the tube and repeat the wash two more times. After washing, remove all but approximately 100 μl of the S-basal solution. Next, add 2 μl of the worm/S-basal mixture to an NGM plate. Using a microscope, count the number of worms present. Ideally, there will be between 50-250 worms per 2 μl of S-basal.
Now that the chemotaxis plates and the worms are ready, we can get started on the chemotaxis assay. First, mix equal volumes of your test solution with 0.5 M sodium azide, an anesthetic that will paralyze worms once they reach their destination. Do the same with your control solution. Next, pipette 2 μl of worm/S-basal mixture onto the center of your chemotaxis plate. Then, pipette 2 μl of the test or control solution and place on appropriately labeled points on the chemotaxis plate. Once the test and control solutions have been absorbed, place the lid back on, invert the plate, and set a timer for 1 hour.
After the worms have been given one hour to respond to the chemical stimuli on the plate, the data can be analyzed. Manually count the number of worms within each quadrant. If the worms are attracted to the test chemical, there will be more worms present in those quadrants. If they are neutral towards that chemical, worms will be present in each quadrant equally.
Use these data to calculate the chemotactic index, which is the number of worms in the test quadrants minus the number of worms in the control quadrant, divided by the total number of worms. A chemotactic index close to +1 suggests attraction, while a chemotactic index close to -1 indicates repulsion.
Now that we’ve learned how to set up a chemotaxis assay, let’s have a look at how these experiments are applied to answer scientific questions.
One of the ways chemotaxis assays in C. elegans have been applied is for studying learning and memory. For example, worms can be conditioned to associate a chemical stimulus with a food source. Well-fed worms are starved for one hour, and then they are conditioned with food, as well as a chemical such as butanone.
Next, the worms are held on a plate with food, but without butanone. Running a chemotaxis assay will then determine whether the worms have learned to associate butanone with food. Many variations of this experiment can be performed to determine other information such as which genes or neurons are important for learning and memory.
Olfactory adaptation is a phenomenon that occurs when sensory neurons decrease their response to a stimulus over time, allowing the animal to respond to other, possibly more important, stimuli. For example, wild-type C. elegans exposed to an odor for a period of time, will ignore that odor during a chemotaxis assay due to olfactory adaptation, rather than be attracted to it. Therefore, high throughput genetic screens can be performed to reveal the genetic regulators of olfactory adaptation, such as egl-4. Additionally, transgenic worms expressing fluorescently tagged proteins can be observed for changes in localization during olfactory adaptation.
Finally, chemotaxis assays can be used in C. elegans to study Alzheimer’s disease. Scientists can express fluorescently tagged human amyloid beta peptide – a hallmark of Alzheimer’s disease – in the neurons of C. elegans. Interestingly, chemotaxis assays revealed that worms expressing amyloid beta in a population of neurons show reduced chemotaxis towards a chemo-attractant compared to the control. Many variations of this experiment could be performed, including expressing amyloid beta in other neuron populations or tissues, or determining whether any compounds can alleviate the effects of amyloid beta expression, ultimately leading to a potential therapy.
You’ve just watched JoVE’s introduction to chemotaxis in C. elegans. First, we defined what chemotaxis is and why it is important in nature for organisms and cells. Then we demonstrated how to perform a chemotaxis assay with C. elegans. Finally, we discussed how chemotaxis can be applied to understand learning and memory, olfactory adaptation, and Alzheimer’s disease. Thanks for watching!
Related Videos
Biology I: yeast, <em>Drosophila</em> and <em>C. elegans</em>
231.9K 浏览
Biology I: yeast, <em>Drosophila</em> and <em>C. elegans</em>
181.9K 浏览
Biology I: yeast, <em>Drosophila</em> and <em>C. elegans</em>
108.1K 浏览
Biology I: yeast, <em>Drosophila</em> and <em>C. elegans</em>
102.0K 浏览
Biology I: yeast, <em>Drosophila</em> and <em>C. elegans</em>
45.1K 浏览
Biology I: yeast, <em>Drosophila</em> and <em>C. elegans</em>
69.6K 浏览
Biology I: yeast, <em>Drosophila</em> and <em>C. elegans</em>
180.3K 浏览
Biology I: yeast, <em>Drosophila</em> and <em>C. elegans</em>
112.4K 浏览
Biology I: yeast, <em>Drosophila</em> and <em>C. elegans</em>
93.6K 浏览
Biology I: yeast, <em>Drosophila</em> and <em>C. elegans</em>
38.3K 浏览
Biology I: yeast, <em>Drosophila</em> and <em>C. elegans</em>
17.8K 浏览
Biology I: yeast, <em>Drosophila</em> and <em>C. elegans</em>
89.8K 浏览
Biology I: yeast, <em>Drosophila</em> and <em>C. elegans</em>
119.5K 浏览
Biology I: yeast, <em>Drosophila</em> and <em>C. elegans</em>
52.8K 浏览
Biology I: yeast, <em>Drosophila</em> and <em>C. elegans</em>
32.2K 浏览