斑马鱼已经成为研究遗传学和发育生物学的常用模型。斑马鱼的身体是透明的,这使得它们在发育的早期阶段能够在细胞水平直接观察到组织的形态发生。而且,斑马鱼很容易进行基因操作,这使得研究者能够在研究和人类的基因相似度极高的脊椎动物的发育过程中决定基因表达的效果。
本视频对斑马鱼发育的主要阶段提供了简单的概述,并集中讨论在受精后的前24小时。该讨论将从由一个细胞构成的接合子或者卵裂球开始,它位于卵黄球的顶端。卵裂球的分裂将产生胚胎,它将在几个小时内含有成千上万个细胞。下一步将解释通过神奇的细胞移动产生外包而形成原肠胚,然后再揭示它们是如何将大量的细胞改造并进入一个移动的胚胎,在仅仅一天内形成一个跳动的心脏。我们还将介绍胚胎发育的孵化期,在这个阶段,它们会成为能够游泳和捕食的幼虫。中间还会插入照顾斑马鱼幼虫的重要提示,包括如何将斑马鱼在指定的设备中培养到成年,该设备也称保育室。最后,本视频将会介绍几种常用的用于研究胚胎发育的技术,来阐述斑马鱼是如何帮助我们更好的理解人类的发育和疾病。
斑马鱼胚胎拥有许多特性,使得它成为发育生物学家们最喜欢的生物模型。它们的快速、外部发育以及透明的身体使得它们便于观察。另外,斑马鱼胚胎利于物理和基因操作,便于研究人员分解控制发育过程的信号。本视频将会概述斑马鱼的生命周期、胚胎的早期发育、成年斑马鱼的培育、以及重点介绍几种利用斑马鱼胚胎发育的技术。
首先,让我们重温一下斑马鱼发育过程的基本阶段。斑马鱼的生命周期可以分为四个阶段:胚胎、幼虫、少年期和成年期。从受精卵到成年期的全部生命周期大约是90天。
当斑马鱼的胚胎在28摄氏度培养的时候,其早期的发育是迅速而可预测的。所以可以用受精后的小时数或者天数来定义发育阶段(通常简写为hpf或者dpf)。但是,如果升高或者降低培养温度,发育阶段可以被更加精确地用形态学特征来鉴定。用这种方法,第一个24小时可以被划分为5个阶段:接合期、分裂期、囊胚期、原肠胚期和分割期。
在胚胎孵化成幼虫之前接下的24小时是该咽阶段。
您已经熟悉了斑马鱼发育的主要阶段,现在就让我们具体看一下第一个24小时的发育。
斑马鱼的生命周期从受精卵开始。这个接合子有几个重要结构,包括位于胚胎外侧称为绒毛膜的保护性膜,以及为斑马鱼胚胎发育至可以自己取食之前提供营养的卵黄。受精后不久,细胞质会向卵的一极移动,使得这个单细胞发生膨胀,被称为胚盘。
在分裂期,胚盘会分裂形成卵裂球,然后继续进行快速、同步的细胞分裂,但是细胞并不生长。
这种快速分裂之所以成为可能是因为母体已经在卵的内部贮存了RNA,用于在卵裂球中制备蛋白质所需,从而省去RNA的合成。在泡胚期,受精卵开始合成它自己的RNA,这会延长细胞周期。在这个周期,细胞会开始发生显著的移动,即移动到卵黄的表面,称为外包。
当细胞开始移动并覆盖半个卵黄表面的时候,原肠胚期开始了。这个阶段因不同的细胞移动类型而命名为原肠胚形成期。这时,细胞会移动到先前细胞层的下方。结果形成了三个不同的细胞层,称为胚层,包括内胚层、中胚层和外胚层。不同胚层的细胞会有完全不同的归宿:外胚层形成表皮和神经系统;内胚层形成内脏;而中胚层形成肌肉、骨骼和脉管系统。
受精后12小时,中胚层开始分裂成为体节。它是沿着躯干的一种分段组织,最终会成为肌肉。尽管在这个分裂期体节的数目用于定义个体的发育阶段,但是在这10个小时的持续过程中,还有很多变化在同时进行着。受精后24小时,胚胎活跃,甚至有了一颗跳动的心脏。
仅一天的时间已经发生了很多变化,但胚胎的工作依然没有完成。胚胎在绒毛膜内继续发育,直至受精后大约三天,孵化成为幼虫。在快速的消耗掉卵黄中储存的能量的同时,幼虫很快发育出一种用于游泳的类似于鱼鳔的特殊结构:一种充气的用于控制浮力的器官。受精7天后的小斑马鱼,或称为鱼苗,就可以自由移动并寻找食物。
准备好收养斑马鱼了吗?你需要一个 保育室来饲养你的鱼苗到成年。也不全是那个样子。将幼虫放进水缸,只需要换很少的水甚至不用换,然后加水的流动性帮助斑马鱼来增进它们捕食和游泳的能力。幼虫通常以再水化的干燥食物和微生物为食,例如草履虫,这样能使生长速率最大化。在保育室中2到3个月后,斑马鱼到达成年期,完成了生命周期。
我们已经了解了斑马鱼发育过程中的一些主要阶段,现在让我们来看一下目前用来研究斑马鱼的一些技术。
斑马鱼的个体小和其透明胚胎使得它们适于做RNA的原位杂交。这种技术是用一个标记的RNA分子,它能够和目标mRNA互补,这样就能观察到在整个生物体中该基因的表达。基因表达随着时间和在某种特定器官里的变化可以非常容易地观察到,这为研究发育过程提供深入的见解。
另外,斑马鱼胚胎的外部发育特点使得它们适于细胞移植。来自荧光标记的早期胚胎的细胞被移植到未标记的宿主胚胎,然后可以全程追踪。这种方法使得研究者不但可以很容易地在活体上观察到细胞移动,而且能够考查细胞相互作用对器官功能的影响。
最后,由于斑马鱼胚胎很容易采用显微注射的方法进行基因改造,所以研究者们能够在发育过程中从单细胞阶段就开始研究特定基因的功能。例如,为了研究某个基因功能缺失后的影响,可以向斑马鱼体内注射吗啉代。作为反义的寡核苷酸,它可以终止蛋白质的表达。对注射过的斑马鱼进行筛选,得到期望的发育表型,例如在血管形成方面的变化。这种技术可以对研究复杂发育进程的基因控制提供深入了解。
您刚观看的视频是JoVE对斑马鱼发育过程的介绍。本短片概括了斑马鱼的生命周期,介绍了斑马鱼早期发育的阶段,并重点说明了斑马鱼作为研究工具在发育生物学中的重要作用。感谢观看。
Zebrafish embryos have many characteristics that make them a favorite model among developmental biologists. Their rapid, external development and transparency make them uniquely suited to visualization. Additionally, embryos are amenable to both physical and genetic manipulations, allowing researchers to tease apart the signals controlling developmental processes. This video will go over the zebrafish life cycle, early stages of embryo development, raising fish to adulthood, and highlight some techniques that take advantage of developing zebrafish embryos.
First, let’s go over the basic steps in zebrafish development.
The zebrafish lifecycle is divided into four major periods: Embryo, larva, juvenile, and adult. The full life cycle from fertilized egg to adult is a quick 90 days.
Early development occurs at a rapid, but predictable rate when the embryos are raised at 28 °C. As a result, stages can be defined as the number of hours or days post fertilization (more commonly abbreviated as hpf or dpf). However, if the incubation temperature is increased or decreased, stages can be more accurately identified by morphological features. By this method, the first 24 hours are divided into five phases: Zygote, cleavage, blastula, gastrula, and segmentation. The pharyngula phase encompasses the next 24 hours until the embryos hatch into larvae.
Now that you’re familiar with the major stages of zebrafish development, let’s go over the first 24 hours in more detail.
The zebrafish life cycle begins with a fertilized egg. This zygote has a few important structures, including the protective membrane surrounding the embryo called the chorion and the yolk that provides nutrients for embryonic development until the fish can feed itself. Shortly after fertilization, cytoplasm moves toward one pole of the egg inflating a single cell called the blastodisc.
During the cleavage period, the blastodisc divides to form the blastomeres, which continue to undergo rapid, synchronized cell divisions with no cell growth.
These rapid divisions are possible because RNA deposited in the egg by the mother is used to make the proteins functioning within the blastomeres, eliminating the need for RNA synthesis. During the blastula period, the embryo begins to make its own RNA, thus lengthening the cell cycle. This period also includes the beginning of a dramatic movement of cells over the surface of the yolk, known as epiboly.
When the cells have advanced to cover about half of the yolk the gastrula period begins. This period is named for a different kind of movement, known as gastrulation, in which cells migrate under the advancing cell front. The result is three distinct layers of cells called the germ layers, including the endoderm, mesoderm, and ectoderm. Cells in each of these three layers have very different fates: The ectoderm gives rise to epidermis and nervous system, the endoderm forms the gut, and the mesoderm generates muscle, bone, and vasculature.
By 12 hpf, the mesoderm begins to divide into somites, which are tissue segments along the trunk that will later become muscle. Although the number of somites defines the individual stages in this segmentation period, there’s a lot more than that going on during it’s 10 hour duration. By just 24 hours post fertilization, the embryos are active and even have a beating heart!
It’s come a long way in just one day, but the embryo’s work is not yet done! The embryos continue to develop within their chorions until they hatch into larvae at about 3 days post fertilization. While rapidly depleting the energy stores of the yolk, the larvae soon develop specialized structures for swimming, like the swim bladder: A gas-filled organ that controls buoyancy. After 7 dpf, the young fish, or “fry”, are fully mobile and looking for food!
Ready to adopt a fish? You’ll need a nursery to raise your fry to adulthood. No, not quite like that. Larvae are placed into tanks with little to no water exchange to start, and increasing water flow as the fish improve their ability to hunt and swim. Larvae are usually fed a combination of rehydrated dry food and microorganisms, such as paramecia, to maximize growth rates. After 2-3 months in the nursery, the fish reach adulthood, completing the lifecycle.
Now that we’ve seen some of the major stages of zebrafish development, let’s look at some techniques used to study these steps.
The small size and transparency of zebrafish embryos makes them amenable to RNA in situ hybridization. This technique uses a labeled RNA molecule complementary to an mRNA of interest, to visualize gene expression throughout the entire organism. Changes in gene expression over time and in specific organs are easily observed and provide insight to developmental processes.
Additionally, the external development of zebrafish embryos makes them amenable to cell transplantation. Cells from fluorescently labeled early embryos can be transplanted into unlabeled host embryos, and tracked over time. This method allows researchers to examine how cell interactions contribute to organ function as well as to easily visualize cell movements in vivo.
Finally, because zebrafish embryos are easily genetically manipulated by microinjection, researchers can examine the role of specific genes during development starting from the one-cell stage. For example, to study the effect of loss of function of a gene, zebrafish can be injected with morpholinos, which are antisense oligonucleotides designed to block protein expression. Screening injected fish for developmental phenotypes, such as changes in the assembly of blood vessels, provides insight into the genetic control of complex developmental processes.
You’ve just watched JoVE’s video on zebrafish development. This video outlined the zebrafish lifecycle, covered the stages of early zebrafish development, and highlighted the power of the zebrafish as a tool in developmental biology. Thanks for watching!
Related Videos
Biology II: Mouse, Zebrafish, and Chick
92.3K 浏览
Biology II: Mouse, Zebrafish, and Chick
61.6K 浏览
Biology II: Mouse, Zebrafish, and Chick
78.2K 浏览
Biology II: Mouse, Zebrafish, and Chick
44.5K 浏览
Biology II: Mouse, Zebrafish, and Chick
13.8K 浏览
Biology II: Mouse, Zebrafish, and Chick
24.2K 浏览
Biology II: Mouse, Zebrafish, and Chick
57.7K 浏览
Biology II: Mouse, Zebrafish, and Chick
84.3K 浏览
Biology II: Mouse, Zebrafish, and Chick
100.0K 浏览
Biology II: Mouse, Zebrafish, and Chick
89.1K 浏览
Biology II: Mouse, Zebrafish, and Chick
24.8K 浏览
Biology II: Mouse, Zebrafish, and Chick
57.0K 浏览
Biology II: Mouse, Zebrafish, and Chick
40.2K 浏览
Biology II: Mouse, Zebrafish, and Chick
18.5K 浏览
Biology II: Mouse, Zebrafish, and Chick
53.9K 浏览