资料来源: 实验室博士尼尔给公司造成的 — — 西蒙 · 弗雷泽大学
脱气指消除溶解的气体从液体的过程。溶解氧或二氧化碳等气体的存在会妨碍利用敏感试剂、 干扰光谱测量,或可导致有害的泡沫形成的化学反应。
大量的不同的技术都可用于脱气液体;其中包括加热、 超声搅拌、 化学去除气体、 替代与惰性气体鼓泡和冻融泵循环。泵、 冻融循环是一种常用且有效的小规模脱气,方法和将更多的细节在这里展示。
冻融泵脱气是在减少使用高真空/惰性气体双歧管的压力下进行的。过程的初始阶段包括冻结使用液氮或干冰/异丙醇浆的溶剂。然后应用真空和疏散上面冷冻溶剂顶空。瓶子密封的然后解冻溶剂,允许释放溶解气体组分。泵-冻融过程通常被重复至少两个额外的周期,以减少溶解气体的百分比。1,2
这种方法,是利用液体气体溶解度的压力依赖性。在亨利的法律(方程 1)的函件中 (Caq) 浓度,溶解在液体是气体的直接气 (P气) 中水汽分压比例 (k) 第一阶段以上的液体在恒定的温度,体积和压强下。3
Caq = kP气体 (方程 1)
降低以上的液体气体的压力在液体中减少导致油中溶解气体的溶解度。因此,要重新建立气-液相平衡,溶解的气体释放从液体作为一个泡沫。
在下面的过程中,泵的冻融循环技术将证明苯作为外部冷却和变暖浴,分别使用液态氮和温暖的自来水。执行这项技术所需的实验装置由双歧管茂线连接的真空与氮源组成。施伦克线是连接到适当的玻璃器皿,如施伦克瓶配备真空兼容油管线 (图 1)。1,2
图 1。施伦克线照片配备真空和氮源。
图 2。详细的无泵解冻步骤照片: (a) 第 1 步,置于烧瓶; 溶剂(b) 第 2 步,冻结在干冰溶剂 (或者与液态氮);(c) 第 3 步,介绍真空;(d) 第四步,密封瓶下真空;(e)、 (f) 在第 5 步、 解冻的溶剂和观察气泡; 进化(g) 第 7 步重复冻结解冻过程 (三个周期的建议);(h) 第 8 步,密封下氮溶剂。
脱气液体在有机化学中的许多化学合成技术势在必行。脱气指消除溶解的气体从液体的过程。脱气是重要的化学物种易患有害反应与氧气的情况。泵、 冻融循环是一种常用的方法,用于液体的脱气的规模小。这项技术是在减少使用茂行或真空/惰性气体双歧管的压力下进行的。这个视频将概述执行冻融泵脱气在实验室中的原则。
冻融泵脱气利用气体的溶解度压强的依赖关系中的一种液体。这就是为什么汽水泡沫时打开,指示性的亨利定律。根据亨利定律,在液体中溶解气体的摩尔分数以上的液体汽相是气体的分压成正比。因此,通过降低以上的液体,溶解性溶解的气体减小,气体的压力,然后释放作为泡沫。
冻融泵脱气涉及到第一次冻结使用液氮或干冰的杜瓦瓶的溶剂。然后应用真空,和上面冷冻溶剂顶空疏散。这将减少在以上的液体,从而降低油中溶解气体的溶解度顶压力。
然后密封瓶和溶剂解冻,使溶解气体组分释放到顶空。液体然后再冷冻,和作为根据需要多次重复这一过程。
冻融泵脱气通常执行与茂线安装程序,因为它涉及到的真空应用及引进惰性气体。施伦克线包括一个带有多个端口的双玻璃流形。茂行此集合的视频将进入更多细节这台设备。现在,介绍了冻融泵技术的基本知识,程序将在实验室中进行演示。
第一,获得一个干净、 干燥的茂烧瓶。检查有裂缝或骨折,这可能会使瓶粉碎过程中瓶。
施伦克瓶安全钳钳夹,并添加所需的溶剂或解决方案。不要使用超过 50%的体积,因为某些溶剂扩大凝固时,可以粉碎烧瓶。关闭旋塞阀,并确保任何开口都封。施伦克瓶侧臂连接茂线用一块的软管,并保留相应阀在关闭茂行。打开烧瓶,以及连接到真空线撤离烧瓶的阀的旋塞阀。一旦建立了真空,关闭阀门。阀门开启到惰性气体线填补烧瓶。一旦充满惰性气体,关闭水龙头烧瓶,然后在行上。
潜入含液态氮,冻结液体杜瓦瓶。溶剂冻结时,打开上施伦克烧瓶中,活塞和上茂线要拉在烧瓶中的真空阀。真空条件下和液氮杜瓦瓶约 10 分钟内保持烧瓶。
删除从液氮杜瓦瓶。下一步,通过关闭旋塞阀的密封。
为了完全熔化溶剂浸泡洗个温水澡中的长颈瓶。在此过程中,气泡从溶剂将明显的进化。不打扰的液体,并允许溶剂本身解冻。
一旦溶剂已完全解冻,用液氮杜瓦瓶,替换温水浴,结冰的溶剂。
当溶剂冷冻的时打开旋塞阀茂烧瓶和茂线要拉一个真空的瓶子里。10 分钟后关闭旋塞阀的烧瓶和茂线,然后卸下液氮杜瓦瓶。解冻再中洗个温水澡的解决方案。重复此过程,直至气泡不再进化从溶剂。
这些周期后,密封在惰性气体下的施伦克瓶。要这样做,阀门开启到茂线,惰性气体,然后打开旋塞阀的烧瓶,揭露了溶剂对惰性气氛。
当施伦克瓶充满气体时,关闭茂烧瓶和茂线阀。解决方案现在是脱气并准备使用。
脱气技术是非常重要的应用程序在某些气体的存在是危险的或可能污染的实验。
解有机合成的脱气是关键系统中的应用施伦克线。在这个实验中,合成了镉硒化物纳米晶,氧是有害的反应。第一,分子前体编制并加热。混合物在真空中脱气和瓶然后通红氩。在氩气气氛中完成了反应。
米勒-尤列实验是开创性的研究,侧重于生命的起源。实验要求,只有在原始大气中的气体存在。首先,原始大气中含有水来模拟海洋密封圆底烧瓶已重新创建。它装有模拟雷电的电极。液体脱气使用茂行之前引入原始气体氨和甲烷等。
密闭的烧瓶含有气体是从系统中删除。然后进行火花来模拟在滚烫的汤,闪电击中。生成了大量的氨基酸和其他小的有机分子。
也可使用真空室在哪里,周围的空气将不会污染解决方案的情况下进行脱气。在此示例中,聚二甲基硅氧烷支柱被从一个事先准备好的模具成型。模压的器具,称为微流控装置,用于精确的控制小卷的液体。为此,大力混合聚二甲基硅氧烷基地和固化剂的质量比 10:1。在一个真空室,以删除所有泡沫然后脱气的解决方案。脱气的聚合物被倒入模具中,然后固化在烤箱中。设备被分开模具,然后用液体表面张力特性进行研究。
你刚看了朱庇特的脱气溶剂使用冻融泵技术的简介。您现在应该如何在茂线系统中使用这种技术更好地理解。
谢谢观赏 !
去除溶解气体是重要的学术界和工业界。它往往是需要保持质量的机器及实验室仪器,保护各种化学反应,并获得准确的读数为色谱法和分光光度法。
使用或生成空气敏感试剂,例如反应、 有机金属化合物、 硫醇、 膦配体,电子富含芳烃经常需要某种程度的脱气,保持其完整性,整个试验。如果不采取适当的预防措施,以去除溶解的气体,可能改变产量或甚至空气敏感反应的产物。溶解的氧对光化学研究影响淬火激发的态。例如,芳香态可以淬由少量的氧气在溶液中,影响强度和光谱分布 (图 3)。
图 3。荧光发射光谱的解决方案。用高 (16 µ M) 脱气的苯 (蓝线) 和氧饱和苯 (红线) 激发在 410 nm 哪里发射强度在 475 nm 减少 14%氧饱和溶液中。
在行业中,水是一种常用的流体进行热量交换的。金属管道、 锅炉系统和泵的寿命是水的取决于运行的质量。水含有不同级别的氧气和二氧化碳,会对金属材料造成损害。氧气是一种氧化试剂,而二氧化碳是腐蚀性由于其转换为羧酸。脱气水送达上述提及系统将延长设备使用寿命。
此外,在溶剂中的气体可以在高性能液相色谱法 (HPLC) 对性能和输出有实验室仪器等方面的负面后果。许多文书有金属螺旋桨或分发溶剂的泵。当接触有溶解气体的溶剂,它可能导致气蚀和导致破坏或退化的金属部件的腐蚀。探测器稳定性也受溶解气体的存在并不足以消除氧导致基线漂移。
小到中等规模的液体脱气,冻融泵循环为适当的相对快速和有效的方法。这一过程可以帮助克服一些讨论的问题以上伴在溶剂中存在溶解气体。
The degassing of liquids is imperative to many chemical synthesis techniques in organic chemistry. Degassing refers to the process by which dissolved gases are removed from a liquid. Degassing is important in cases where chemical species are susceptible to unwanted reactions with oxygen. Freeze-pump-thaw cycling is a common method utilized for the small scale degassing of liquids. The technique is performed under reduced pressure using a Schlenk line, or vacuum/inert gas double manifold. This video will outline the principles of performing freeze-pump-thaw degassing in the laboratory.
Freeze-pump-thaw degassing takes advantage of the pressure dependence of the gas’s solubility in a liquid. This is why soda bubbles when opened, indicative of Henry’s law. According to Henry’s Law, the mole fraction of a gas dissolved in a liquid is directly proportional to the partial pressure of the gas in the vapor phase above the liquid. Thus, by lowering the pressure of the gas above the liquid, the solubility of the dissolved gas decreases, and is then released as bubbles.
Freeze-pump-thaw degassing involves first freezing the solvent using a Dewar of liquid nitrogen or dry ice. A vacuum is then applied, and the headspace above the frozen solvent evacuated. This decreases the pressure in the headspace above the liquid, thereby lowering the solubility of the dissolved gas.
The flask is then sealed and the solvent is thawed, enabling the release of dissolved gaseous species into the headspace. The liquid is then refrozen, and the process repeated as many times as necessary.
Freeze-pump-thaw degassing is typically performed with a Schlenk line setup, as it involves the application of a vacuum, as well as the introduction of inert gas. A Schlenk line consists of a dual glass manifold with multiple ports. This collection’s video on the Schlenk line will go into more detail about this apparatus. Now that the basics of the freeze-pump-thaw technique have been described, the procedure will be demonstrated in the laboratory.
First, obtain a clean, dry Schlenk flask. Inspect the flask for cracks or fractures, which may cause the flask to shatter during the process.
Secure the Schlenk flask with a clamp, and add the desired solvent or solution. Do not use more than 50% of the volume, as some solvents expand upon freezing, which could shatter the flask. Close the stopcock, and ensure that any openings are sealed. Connect the side arm of the Schlenk flask to the Schlenk line with a piece of flexible tubing, and keep the corresponding valve on the Schlenk line closed. Open the stopcock on the flask, as well as the valve connected to the vacuum line to evacuate the flask. Once vacuum is established, close the valve. Open the valve to the inert gas line to fill the flask. Once filled with inert gas, close the stopcocks on the flask and then on the line.
Submerge the flask into a Dewar containing liquid nitrogen in order to freeze the liquid. When the solvent is frozen, open the stopcock on the Schlenk flask, and the valve on the Schlenk line to pull a vacuum in the flask. Keep the flask under vacuum and inside the liquid nitrogen Dewar for about 10 min.
Remove the flask from the liquid nitrogen Dewar. Next, seal by closing the stopcock.
Immerse the flask in a warm water bath in order to fully melt the solvent. During this procedure, gas bubbles will visibly evolve from the solvent. Do not disturb the liquid, and allow the solvent to thaw by itself.
Once the solvent has thawed completely, replace the warm water bath with the liquid nitrogen Dewar, and refreeze the solvent.
When the solvent is frozen, open the stopcock on the Schlenk flask and on the Schlenk line to pull a vacuum in the flask. After 10 min, close the stopcock on the flask and Schlenk line, then remove the liquid nitrogen Dewar. Thaw the solution again in a warm water bath. Repeat the process until gas bubbles no longer evolve from the solvent.
After the completion of these cycles, seal the Schlenk flask under inert gas. To do so, open the valve to the inert gas on the Schlenk line, and then open the stopcock of the flask to expose the solvent to a inert atmosphere.
When the Schlenk flask is filled with gas, close the Schlenk flask and Schlenk line valves. The solution is now degassed and ready to use.
Degassing techniques are vitally important for applications where the presence of certain gases is either hazardous, or may contaminate an experiment.
Degassing of solutions for organic synthesis is a key application of a Schlenk line system. In this experiment, cadmium selenide nanocrystals were synthesized, where oxygen is detrimental to the reaction. First, molecular precursors were prepared and heated. The mixture was degassed under vacuum, and then the flask flushed with argon. The reaction was then completed under argon atmosphere.
The Miller-Urey experiment is a pioneering study focused on the origins of life. The experiment requires that only gases in a primordial atmosphere are present. First, the primordial atmosphere was recreated in a sealed round bottom flask containing water to simulate the oceans. It was fitted with electrodes that simulate lightning. The liquid was degassed using a Schlenk line, prior to introducing primordial gases such as ammonia and methane.
The closed flask containing the gases was removed from the system. Sparking was then conducted to simulate lightning in the primordial soup. A number of amino acids and other small organic molecules were generated.
Degassing can also be conducted using a vacuum chamber in cases where ambient air will not contaminate the solution. In this example, polydimethylsiloxane pillars were molded from a previously prepared mold. The molded apparatuses, known as microfluidic devices, are used to finely control small volumes of liquid. To do this, a 10:1 mass ratio of PDMS base and curing agent were vigorously mixed. The solution was then degassed in a vacuum chamber to remove all bubbles. The degassed polymer was then poured over the mold, and cured in an oven. The devices were then separated from the mold, and used to study surface tension properties of liquids.
You’ve just watched JoVE’s introduction to the degassing of solvents using the freeze-pump-thaw technique. You should now have a better understanding of how to use this technique in a Schlenk line system.
Thanks for watching!
Related Videos
Organic Chemistry
34.1K 浏览
Organic Chemistry
166.3K 浏览
Organic Chemistry
70.3K 浏览
Organic Chemistry
41.5K 浏览
Organic Chemistry
55.9K 浏览
Organic Chemistry
79.1K 浏览
Organic Chemistry
705.5K 浏览
Organic Chemistry
157.2K 浏览
Organic Chemistry
237.2K 浏览
Organic Chemistry
212.4K 浏览
Organic Chemistry
332.9K 浏览
Organic Chemistry
32.3K 浏览
Organic Chemistry
288.4K 浏览
Organic Chemistry
358.5K 浏览
Organic Chemistry
246.8K 浏览