Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove

8.16: Journal Bearings

TABLE OF
CONTENTS
JoVE Core
Mechanical Engineering

A subscription to JoVE is required to view this content. Sign in or start your free trial.

Education
Journal Bearings
 
TRANSCRIPT

8.16: Journal Bearings

Journal bearings are mechanical components that support and provide lateral stability to rotating shafts and axles. They are crucial in reducing friction, wear, and vibration in machinery such as engines, turbines, and pumps. The principle behind journal bearings is forming a thin lubricant film between the bearing surface and the rotating shaft, which minimizes direct contact and reduces frictional forces.

To better understand the concept of journal bearings, consider a rope winch with dry or partially lubricated journal bearings supporting its rotating shaft. As the spool rotates clockwise, the shaft rolls up the inner surface of the bearing until it slips and undergoes stable rotation.

Figure 1

A free-body diagram of the shaft can be drawn to analyze the forces acting on the system. These forces include the weight of the shaft, acting vertically downward, the clockwise couple, representing the torque applied to the shaft, and the reaction force exerted by the bearing on the shaft. The non-collinear reaction force is equal and opposite to the weight of the shaft and acts at an angle relative to the surface normal. This angle is referred to as the angle of kinetic friction. The line of action of the reaction force is always tangent to the circle of friction, which represents the locus of all possible points of contact between the shaft and the bearing. By applying the moment equilibrium condition about point O (the center of the shaft), we can determine the shaft moment needed to maintain stable rotation.

Equation 1

The sine term in the equation can be approximated to the tangent of the kinetic friction angle for a small kinetic friction angle.

Equation 2

As the tangent of the kinetic friction angle equals the coefficient of kinetic friction, we can calculate the moment required to overcome the bearing's frictional resistance. This moment is an essential factor in determining the efficiency and performance of the system.

Equation 3


Suggested Reading

Tags

Journal Bearings Mechanical Components Support Lateral Stability Rotating Shafts Axles Friction Reduction Wear Reduction Vibration Reduction Engines Turbines Pumps Lubricant Film Contact Reduction Frictional Forces Rope Winch Dry Bearings Partially Lubricated Bearings Rotating Shaft Spool Rotation Stable Rotation Free-body Diagram Forces Analysis Weight Of The Shaft Clockwise Couple Torque Reaction Force Bearing Surface Normal Angle Of Kinetic Friction Circle Of Friction Moment Equilibrium Condition

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter