Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Medicine

牙科复合材料在模拟腔收缩测量与数字图像相关

Published: July 21, 2014 doi: 10.3791/51191

Summary

为了了解聚合收缩应力的牙科树脂的复合树脂修复的空间发展,数字图像相关被用于通过关联聚合前后所采取的恢复的图像,以提供恢复的模型玻璃腔的全视野的位移/应变测量。

Abstract

牙科复合树脂聚合收缩可导致恢复剥离或破裂的牙齿组织中合成,恢复牙齿。为了了解在何处和如何收缩应变和应力的经修复的牙齿发展,数字图像相关(DIC)是用来提供模型修复中的位移和应变分布是经历了聚合收缩的全面视图。

标本与模型腔进行了圆柱形玻璃棒与直径和长度为10毫米制成。近中牙合 - 远(MOD)在每个试样制备腔体的尺寸测量,在3毫米和2毫米的宽度和深度分别。用复合树脂充填型腔后,在观察的表面喷上首次一层薄薄的白色油漆,然后细黑木炭粉打造高对比度的斑点。固化后与之前5分钟,然后拍摄的照片的表面。网络连接应受,这两个图片是使用DIC的软件来计算位移和应变分布相关。

的树脂复合垂直缩水朝向空腔的底部,与具有最大向下位移的恢复的顶部中心部分。在同一时间,它收缩水平朝向其垂直中线。复合材料的收缩率拉伸的材料,在“牙齿修复”界面附近,导致周围的复原牙尖挠度和高的拉伸应变。材料靠近腔壁或地板大都在垂直于界面的方向有直接的菌株。两个直接应变分量的求和表明围绕恢复相对均匀的分布,其大小等于约到的材料的体积收缩应变。

Introduction

树脂基复合材料被广泛使用,因为其卓越的美学和操控性能在口腔修复。然而,尽管被粘结到牙齿组织中的树脂复合材料的聚合收缩仍然是临床关注,开发了收缩应力可能会引起脱粘在牙齿修复接口1 -2。因此,细菌可侵入和驻留在失败的领域,并导致继发龋。另一方面,如果恢复是公粘结到牙齿,收缩应力可能引起牙齿组织开裂。无论这些故障将危及使用寿命的牙修复体,其将受到大量的热负荷和机械负荷的循环。

聚合收缩应变和应力的测量牙科复合树脂3-4的开发和评估也因此成为不可或缺的5-11以提供一个简单的设置,用于测量的树脂复合材料的收缩行为可靠的主要目的。而它们所提供的测量值可能是足够的,用于比较不同材料的收缩行为,它们不会在收缩应力在实际恢复牙齿哪里如何开发有助于理解。具体地讲,的极大兴趣问题是空心墙如何约束复合材料和导线的收缩在牙齿修复12创造收缩应力。需要注意的是,要创建的收缩应力,树脂复合材料的收缩变形的部分具有被转换成拉伸弹性应变。因此,这将是有用的,如果在恢复的应变的该组件可以被测量。最近,光学全视野应变测量技术,数字图像相关(DIC),已经被应用到自由shrinka的测定在牙科修复13-15的树脂复合材料GE以及物料流。 DIC的基本思想是从它的变形过程中,据此,位移和应变场超过该表面可以被确定拍摄连续图像在样品表面跟踪和关联可见的图案。全视场测量的DIC的方法,该方法是在观察非均匀变形和应变图案13是特别有用的主要优点之一。在这项研究中,DIC是用来揭示的应变模式在牙科复合树脂修复,以了解收缩应力的发展及物色潜在位点剥离的目的。这个信息是不是在上面14-15列举的作品,其中仅测得的修复体的位移,由于聚合收缩直接可用。该测定是使用模拟的牙近中 - 牙合 - 远(MOD)齿腔作为企图复制品的模型进行忒现实牙齿修复的应力或应变。虽然使用真实牙齿更解剖学代表的该缺点是在解剖结构,机械性能,水化程度以及看不见的内部缺陷14的齿之间的显著本质上的差异所导致的大的变化的结果。为了克服这种缺陷,一些研究试图通过将它们分组在颊大小16方面或完全取代了牙齿替代材料17的模型,规范的牙齿样本。例如,铝塑其中有一个类似的杨氏模量,以珐琅(69和83 GPa时,分别)已受聘在收缩应力测量,收缩应力所指出的风口浪尖上偏转17的水平。在这项研究中,石英玻璃的模型(模腔)被用来代替,因为该材料也具有类似的杨氏模量(63 GPa)的对牙釉质和,因为它是透明耳鼻喉科,在标本的任何剥离或开裂可以很容易地观察到。

Subscription Required. Please recommend JoVE to your librarian.

Protocol

注意:使用玻璃腔三牙复合树脂进行了研究:Z100,Z250和LS,如材料清单中列出。其中,LS是已知的以大约1.0%的体积收缩率的低收缩树脂复合材料,比Z250和Z100(〜2%和〜2.5%)18-19的要低得多。的设备和在本研究中使用的其它材料也被在物料列表给出。

1。模型腔准备

  1. 切一个长圆筒形玻璃棒,直径10毫米,为使用低速金刚石锯片10毫米长的短杆。
  2. 切近中-咬合-远端(MOD)的空腔( 图1)测量3毫米(宽)×2毫米(深)在每个试样用适于低速金刚石锯。
  3. 研磨下来每个圆柱形试样以创建一个平面上垂直于所述腔的长度,其尺寸如图1的平坦表面允许精确FOcusing并在复原图像校准。此后,它将被称为观测表面上
  4. 准备3个标本的每个测试的三种材料:Z100,Z250和LS;见材料表。

2,填充模腔与树脂复合

  1. 用刷子silanize所有的玻璃腔体表面涂上一层薄薄的陶瓷底漆。这使得玻璃表面与树脂的复合材料之间的粘合。
  2. 经过约1分钟,涂上一层薄薄的粘合剂。使用LS胶系统复合LS和Adper单键加复合Z100和Z250。
  3. 固化粘合剂与固化灯和持续时间(10-20秒)根据制造商的说明书(材料表)。
  4. 覆盖所有周围的恢复用黑胶带以外的观察面, 如图2中的玻璃表面,其目的是为了避免在固化光到达通过周围的透明玻璃,这不会发生在真牙树脂复合体。
  5. 散装填充模腔与树脂复合材料和刮去多余的扁平化所有的表面。

3,表面涂装

  1. 喷一层薄薄的白色油漆到观察表面,其现在包括树脂复合体的一部分。
  2. 立即撒上一些黑色细木炭粉上油漆来创建高对比度的斑点。该斑点的不规则形状将有助于DIC的软件来识别它们,然后跟踪他们的行踪。

4,样品安装,固化,和拍摄

  1. 参照图2,将一个样品(E)插入夹持器(C)中,用一个螺钉(D)拧紧。然后,将整个装置在一个大的水平梁的末端。
  2. 安全CCD摄像机和一个黄色的照明LED灯到同一个光束,使得他们面临的观测中N曲面。
  3. 使用一台具有可调节夹具,定位光固化,使得其前端在样品上方约1mm。
  4. 取试样的图片来固化之前提供的参考图像。
  5. 固化20秒的树脂复合材料。
  6. 固化后拍摄另一张照片在5分钟。
  7. 放置一个校正块在同一位置作为观察面和拍照。校准块包含圆点与尺寸和间距精确已知的阵列。

5,与DIC的软件图像分析

  1. 进口对各样品,一前一固化,进入DIC软件后两张图片。
  2. 校准的图像的尺寸和纠正使用校准块的图像的图像失真。 。
  3. 定义感兴趣的区域的观察面内进行分析。
  4. 定义的平方子窗口的大小为64 x 64像素的第一次迭代和32×32像素的第二次迭代20。定义重叠为50%。
  5. 关联与固化来计算位移和应变分布前拍摄的参考图像固化后拍摄的图像。

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

三个试样进行了测试的每种材料。每次试验后,试样进行了检查眼睛或,如果需要,使用显微镜。在“牙齿修复”界面或裂缝没有明显的剥离被发现。

图片的分辨率为1,600×1,180像素,5.8毫米的像素大小。具有32个像素的子集的窗口的大小,位移分布的空间分辨率约为186毫米。

图3显示了固化的修复与Z250制成的位移矢量的典型曲线图。标本与其它树脂复合材料生产的类似位移曲线。可以看出,该树脂复合缩水朝向空腔的底部和恢复的顶部中央部有最大向下位移。这样的向下位移的恢复内的深度逐渐减小。与此同时,树脂复合contracte水平ð朝着恢复其水平位移为零的垂直中线。

横向应变的情节, 图4A中 ,示出高拉伸应变浓度沿两个垂直的“牙齿修复”的接口。类似地,垂直拉伸应变浓度可以在图4B的底部接口可以看出。内的恢复,该菌株是不均匀的。更高水平的收缩应变,发现相邻的两个垂直侧壁,以及在恢复( 图4A)的顶部,而垂直收缩应变增加逐渐沿空腔( 图4B)的深度。然而,当两个直接应变分量分别相加,其被命名为在平面内总的直接此处应变,恢复内收缩应变的相对均匀的分布可以看出; 见图4C。辛ilarly,相对均匀的拉伸应变集中的频带可以看到周围的恢复。

为了评价更详细的应变集中,位移和应变值是从一个Z250试样沿水平线在中恢复的深度的DIC的结果进一步萃取,如示于图5。的反对称蓝色虚线曲线示出了的水平位移,其中约2 mm至1毫米,分别为最高和最低值,表示左和右尖头的偏转。正值表示向右位移,负值向左位移。因此,左牙尖移动到右侧和右尖到左边。有在界面处的急剧增加位移在腔的两侧,其锐化在很短的距离进入恢复。随着距离进一步增加,位移的幅度急剧下降和达到零,大约中间的空腔,其中反对称平面布置的宽度。红色实线曲线示出沿同一水平行中的水平应变。它可以看出,在大多数的玻璃表面的应变几乎为零。对应于该位移与峰值幅度在界面处两种拉伸应变峰值,具有约1.7%和1.5%的左边和右边,分别值。内的恢复,约0.5%的相对恒定的收缩应变可以看出。

图6示出沿同一水平行中的3复合树脂的平均面内总的直接压力。 LS产生的最低平面内总的收缩约1%的恢复应变,随后Z250与约2%的值,然后用Z100的2.5%左右的值。三个树脂复合材料的这些平面内总的收缩张力分别为约等于它们的体积收缩率的菌株 18-19。这三个测试的材料显示出类似的拉伸应变浓度的接口,这是在1%左右。

图1
图1:带有MOD腔和观察表面玻璃模型的尺寸。

图2
图2的装置,收缩应变测量包括:A)CCD相机,B)黄色LED照明灯,C)试样夹具座,D)拧紧螺丝,和E)玻璃腔体标本。

IGURE 3“FO:内容宽度=”5英寸“SRC =”/ files/ftp_upload/51191/51191fig3highres.jpg“宽度=”500“/>
图3。充满Z250复合材料的典型试样的位移矢量。虚线表示模腔的边界。

图4
图4应变上观察表面呈现在恢复和拉伸应变集中沿“牙齿修复”界面收缩应变分布:A)水平应变(EXX),B)垂直应变(Eyy)和C)在平面总的直接应变(EXX + Eyy)。虚线表示腔的边界。 请点击这里为viEW这个图的放大版本。

图5
图5。水平位移和应变沿水平线从Z250标本获得的腔中的深度。阴影区域表示所述腔体的位置。

图6
图6在平面内总的直接应变为沿横线在中间空腔深度三个测试复合材料。

Subscription Required. Please recommend JoVE to your librarian.

Discussion

与收缩应变的测量相同的形状和尺寸中使用玻璃腔是在结果中的变化最小化由于在大小,解剖学和天然人类牙齿材料性质的差异。另外,在本研究中使用的熔凝石英玻璃具有类似的杨氏模量对牙釉质,使其成为一个合适的模拟物材料为天然牙齿只要机械行为方面21-22。虽然在真实牙齿修复体,树脂复合材料主要是结合到牙质,而不是搪瓷,并且有两个牙体组织之间的硬度差,预计不会有较软的齿模型得到的应变分布是非常不同的方面它的图案,即使这些值可以是不同的。与陶瓷引物的应用和适当的粘接剂,树脂复合材料和玻璃腔体壁之间的强键合得到保证,使收缩应力充分发展中在speci男人没有恢复的剥离。事实上,在玻璃和树脂的复合体之间的粘结强度被认为是比玻璃的断裂强度较高,因为出现裂缝,在某些玻璃试样,大多填充Z100,当正在使用较大的空腔被发现。同样的观察已经取得了其他研究者12。

薄层涂料喷涂到树脂复合体的表面可能会妨碍由于其有限的刚度的材料的流动和收缩。因此,要特别注意避免过度涂抹的树脂复合材料的表面。该涂料喷涂轻轻地从上方一定距离以允许雾以薄薄地落到试样表面,形成分散,而不是块状,斑点。细木炭粉,后来撒在也由松散的颗粒不太可能阻碍树脂复合材料的运动。

在观察表面的斑点的大小,与子窗口的大小的同时,重要的是要的DIC结果的准确性。一些研究中得出的结论是散斑尺寸应几个像素,使得相关误差是低23。在这项研究中,用5.8微米的图像分辨率,散斑尺寸应该成为〜30微米。这是用一层薄薄的白色颜料和细碳粉末来实现,如上所述。在这项研究中一个适当的子集的窗口尺寸的选择是根据参考文献23-24做,并且为32×32像素的大小被选定之前的几个临床试验已经完成。较大的子集窗口有助于减少随机误差,因为它们含有更多的模式为图像之间的匹配,从而有效地降低在这个过程中23,25的不确定性。然而,使用更大的子集的窗口的成本的更精细的细节中的损失米。因此,只要将相关误差是可以接受的,一个小的窗口大小始终是所需的,特别是当位移/应变图是高度不均匀和局部变形的兴趣。一个最佳的子集的窗口大小的选择通常是由经验或通过试验和误差来确定。软件戴维斯7.2允许使用多达两个盘问为单个的相关性,这意味着更大的子集的窗口的大小可以被用来首先获得一个粗略的但较少噪声的位移字段,然后减小的子集的窗口的大小可以被用来给更详细的,但比较吵位移场。

需要注意的是在树脂中的复合测量的应变为净应变,其中包括弹性应变,蠕变应变和收缩变形。因此,在固化的牙齿修复体的应变模式强烈依赖于从腔体壁的约束,以及在收缩和流树脂复合材料。另一方面,周围的玻璃仅发生弹性变形。接近零的玻璃菌株由于其高弹性模量。还请注意,应变是位移的变化的梯度或速率。因为约束,靠近界面的材料具有非常有限的运动,从而产生快速变化的位移,因此,高的菌株存在。相反,大的材料位移发生在恢复的顶部自由表面,但具有非常低的菌株,因为低位移梯度。作为位移的梯度如下约束的方向,应变的方向也遵循的约束。例如,靠近空腔地板的菌株更在垂直方向比在水平方向上, 如图4B所示 ,因为约束主要是在垂直方向上。另一方面,靠近侧壁的菌株更在水平二rection比在垂直方向上, 如图4A,图6示出了在平面内总的直接菌株中恢复三个试验材料接近其体积收缩张力,这意味着离开平面的收缩应变几乎为零,而弹性应变是很小的。正如预期的那样,LS产最低的平面内总的收缩应变,其次是Z250和Z100则(见材料表)。

拉伸应变进行了明确沿着“牙齿修复”界面看到。这样做的原因是,该树脂组合物的收缩率趋于拉材料远离空腔的墙壁和地板。因为材料的限制,它结束了被拉伸,从而产生拉伸应变。然而,计算出的拉伸应变的幅度可能不准确由于株从说唱推导数值误差懒懒地改变位移场。在图像的相关性分析,可以在每个子集的窗口得到只有一个位移矢量。因此,在两个相邻的子窗口的位移可能会出现一个大的跳跃的位移曲线。当从位移的分化获得的菌株,这些大排量的跳跃可以到不切实际的高应变值产生。另外,形变分布预计是因为在弹性性能不匹配的整个界面不连续的。这也有望在置换的梯度在界面处的突变。然而,由于子集的接口包括两个玻璃和树脂的复合体,计算出的位移和应变有分别在两个区域之间的平均值,因此显得很光滑。在相邻的离散采样点的值之间的线性插值得到明显的连续性。更高分辨率的图像将地磁红,以提高应变测量的精度。

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

作者宣称,他们有没有竞争的财务权益。

Acknowledgments

这项研究是由明尼苏达牙科研究中心生物材料与生物力学(MDRCBB)的支持。

Materials

Name Company Catalog Number Comments
Dental composite Z100 3M ESPE N362979 volume shrinkage ~ 2.5%, Young's modulus ~ 14 GPa
Dental composite Z250 3M ESPE N326080 volume shrinkage ~ 2.0%, Young's modulus ~ 11 GPa
Dental composite LS 3M ESPE N240313 volume shrinkage ~ 1%, Young's modulus ~ 10 GPa
Ceramic Primer 3M ESPE N167818 Rely X
LS System Adhesive 3M ESPE N391675 Adhesive for compoiste LS
Adper Single Bond Plus 3M ESPE 501757 Adhesive for compoiste Z100 and Z250
Glass rod  Corning Inc. Pyrex 7740 borosilicate
Curing light  3M ESPE Elipar S10
White paint  Krylon Product Group Indoor/Outdoor, Flat white
Charcoal powder  Sigma Aldrich, Co. BCBH6518V Fluka activated charcoal
CCD camera  Point Grey Research, Inc. Point Grey Gras-20S4C-C

DOWNLOAD MATERIALS LIST

References

  1. Palin, W. M., Fleming, G. J. P., Nathwani, H., Burke, F. J. T., Randall, R. C. In vitro cuspal deflection and microleakage of maxillary premolars restored with novel low-shrink dental composites. Dental Materials. 21, 324-335 (2005).
  2. Li, H., Li, J., Yun, X., Liu, X., Fok, A. S. -L. Non-destructive examination of interfacial debonding using acoustic emission. Dental Materials. 27, 964-971 (2011).
  3. Dijken, J. W., Lindberg, A. Clinical effectiveness of a low-shrinkage resin composite: a five-year evaluation. J Adhes Dent. 11, 143-148 (2009).
  4. Yamazaki, P. C. V., Bedran-Russo, A. K. B., Pereira, P. N. R., Swift, E. J. Microleakage Evaluation of a New Low-shrinkage Composite Restorative Material. Operative Dentistry. 31, 670-676 (2006).
  5. Watts, D. C., Cash, A. J. Determination of polymerization shrinkage kinetics in visible-light-cured materials: methods development. Dental materials : official publication of the Academy of Dental Materials. 7, 281-287 (1991).
  6. Gee, A. J., Davidson, C. L., Smith, A. A modified dilatometer for continuous recording of volumetric polymerization shrinkage of composite restorative materials. Journal of Dentistry. 9, 36-42 (1981).
  7. Sakaguchi, R. L., Sasik, C. T., Bunczak, M. A., Douglas, W. H. Strain gauge method for measuring polymerization contraction of composite restoratives. Journal of Dentistry. 19, 312-316 (1991).
  8. Fogleman, E. A., Kelly, M. T., Grubbs, W. T. Laser interferometric method for measuring linear polymerization shrinkage in light cured dental restoratives. Dental Materials. 18, 324-330 (2002).
  9. Arenas, G., Noriega, S., Vallo, C., Duchowicz, R. Polymerization shrinkage of a dental resin composite determined by a fiber optic Fizeau interferometer. Optics Communications. 271, 581-586 (2007).
  10. Demoli, N., et al. Digital interferometry for measuring of the resin composite thickness variation during blue light polymerization. Optics Communications. 231, 45-51 (2004).
  11. Sharp, L. J., Choi, I. B., Lee, T. E., Sy, A., Suh, B. I. Volumetric shrinkage of composites using video-imaging. Journal of Dentistry. 31, 97-103 (2003).
  12. Feilzer, A. J., De Gee, A. J., Davidson, C. L. Setting stress in composite resin in relation to configuration of the restoration. Journal of Dental Research. 66, 1636-1639 (1987).
  13. Li, J., Fok, A. S., Satterthwaite, J., Watts, D. C. Measurement of the full-field polymerization shrinkage and depth of cure of dental composites using digital image correlation. Dental Materials. 25, (2009).
  14. Chuang, S. -F., Chang, C. -H., Chen, T. Y. -F. Spatially resolved assessments of composite shrinkage in MOD restorations using a digital-image-correlation technique. Dental Materials. 27, 134-143 (2011).
  15. Arakawa, A., Morita, Y., Uchino, M. Polymerization Shrinkage Behavior of Light Cure Resin Composites in Cavities. Journal of Biomechanical Science and Engineering. 4, 356-364 (2009).
  16. Lee, M. R., Cho, B. H., Son, H. H., Um, C. M., Lee, I. B. Influence of cavity dimension and restoration methods on the cusp deflection of premolars in composite restoration. Dental Materials. 23, 288-295 (2007).
  17. Park, J., Chang, J., Ferracane, J., Lee, I. B. How should composite be layered to reduce shrinkage stress: Incremental or bulk filling. Dental Materials. 24, 1501-1505 (2008).
  18. Weinmann, W., Thalacker, C., Guggenberger, R. Siloranes in dental composites. Dental Materials. 21, 68-74 (2005).
  19. Silikas, N., Eliades, G., Watts, D. C. Light intensity effects on resin-composite degree of conversion and shrinkage strain. Dental Materials. 16, 292-296 (2000).
  20. Yaofeng, S., Pang, J. H. L. Study of optimal subset size in digital image correlation of speckle pattern images. Optics and Lasers in Engineering. 45, 967-974 (2007).
  21. Versluis, A., Tantbirojn, D., Pintado, M. R., DeLong, R., Douglas, W. H. Residual shrinkage stress distributions in molars after composite restoration. Dental Materials. 20, 554-564 (2004).
  22. Sakaguchi, R. L., Wiltbank, B. D., Murchison, C. F. Prediction of composite elastic modulus and polymerization shrinkage by computational micromechanics. Dental Materials. 20, 397-401 (2004).
  23. Lecompte, D., Bossuyt, S., Cooreman, S., Sol, H., Vantomme, J. SEM Annual Conference and Exposition on Experimental and Applied Mechanics, 2007 June 3-6, Springfield, Massachusetts, , (2007).
  24. Huang, J., et al. Digital Image Correlation with Self-Adaptive Gaussian Windows. Exp Mech. 53, 505-512 (2013).
  25. Li, J., Lau, A., Fok, A. S. Application of digital image correlation to full-field measurement of shrinkage strain of dental composites. J. Zhejiang Univ. Sci. A. 14, 1-10 (2013).

Tags

医药,第89,图像处理,计算机辅助,聚合物基复合材料,材料(复合材料)的测试,牙科用复合修复,聚合收缩率,数字图像的相关性,全视场的应变测量,界面剥离
牙科复合材料在模拟腔收缩测量与数字图像相关
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Li, J., Thakur, P., Fok, A. S. L.More

Li, J., Thakur, P., Fok, A. S. L. Shrinkage of Dental Composite in Simulated Cavity Measured with Digital Image Correlation. J. Vis. Exp. (89), e51191, doi:10.3791/51191 (2014).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter