Show Advanced Search


Containing Text
- - -
Filter by author or institution
Filter by publication date
October, 2006
Filter by journal section

Filter by science education

Fossil Fuels: Any combustible hydrocarbon deposit formed from the remains of prehistoric organisms. Examples are petroleum, coal, and natural gas.

Proton Exchange Membrane Fuel Cells

JoVE 10022

Source: Laboratories of Margaret Workman and Kimberly Frye - Depaul University

The United States consumes a large amount of energy – the current rate is around 97.5 quadrillion BTUs annually. The vast majority (90%) of this energy comes from non-renewable fuel sources. This energy is used for electricity (39%), transportation (28%), industry (22%), and residential/commercial use (11%). As the world has a limited supply of these non-renewable sources, the United States (among others) is expanding the use of renewable energy sources to meet future energy needs. One of these sources is hydrogen. Hydrogen is considered a potential renewable fuel source, because it meets many important criteria: it’s available domestically, it has few harmful pollutants, it’s energy efficient, and it’s easy to harness. While hydrogen is the most abundant element in the universe, it is only found in compound form on Earth. For example, it is combined with oxygen in water as H2O. To be useful as a fuel, it needs to be in the form of H2 gas. Therefore, if hydrogen is to be used as a fuel for cars or other electronics, H2 needs to be made first. Thusly, hydrogen is often called an “energy carrier” rather than a “fuel.”

Combustion Chemistry of Fuels: Quantitative Speciation Data Obtained from an Atmospheric High-temperature Flow Reactor with Coupled Molecular-beam Mass Spectrometer

1Institute of Combustion Technology, German Aerospace Center (DLR)

Video Coming Soon

JoVE 56965

 JoVE In-Press

Characterization, Quantification and Compound-specific Isotopic Analysis of Pyrogenic Carbon Using Benzene Polycarboxylic Acids (BPCA)

1Department of Geography, University of Zurich, 2Department of Earth and Ocean Sciences, University of South Carolina, 3Department of Earth Sciences, ETH Zurich, 4Laboratory of Ion Beam Physics, ETH Zurich, 5Department of Geological Sciences, Stockholm University

JoVE 53922


Biofuels: Producing Ethanol from Cellulosic Material

JoVE 10014

Source: Laboratories of Margaret Workman and Kimberly Frye - Depaul University

In this experiment, cellulosic material (such as corn stalks, leaves, grasses, etc.) will be used as a feedstock for the production of ethanol. The cellulosic material is first pretreated (ground and heated), digested with enzymes, and then fermented with yeast. Ethanol production is monitored using an ethanol probe. The experiment can be extended to optimize ethanol production by varying the feedstock used, pretreatment conditions, enzyme variation, yeast variation, etc. An alternative method of monitoring the reaction is to measure the carbon dioxide produced (using a gas sensor) instead of the ethanol. As a low-tech alternative, glucose meters (found in any drug store) can be used to monitor the glucose during the process, if an ethanol probe or carbon dioxide gas sensor is not available. With an increased emphasis on ‘inquiry-based learning”, scientific probes are becoming more popular. Handheld devices like the Vernier Lab Quest used in conjunction with a variety of probes (such as those for conductivity, dissolved oxygen, voltage, and more) allow for less focus on collecting data and/or making graphs and more on analyzing the data and making predictions. Anothe

 Environmental Science

Techniques for the Evolution of Robust Pentose-fermenting Yeast for Bioconversion of Lignocellulose to Ethanol

1Bioenergy Research Unit, National Center for Agricultural Utilization Research, 2Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, 3Chemical Engineering and Material Science, Great Lakes Bioenergy Center, Michigan State University

JoVE 54227


Determination Of NOx in Automobile Exhaust Using UV-VIS Spectroscopy

JoVE 10076

Source: Laboratories of Margaret Workman and Kimberly Frye - Depaul University

In the troposphere, ozone is naturally formed when sunlight splits nitrogen dioxide (NO2):

NO2 + sunlight → NO + O

O + O2 O3 Ozone (O3) can go on to react with nitric oxide (NO) to form nitrogen dioxide (NO2) and oxygen: NO + O3 → NO2 + O2 This results in no net gain of ozone (O3). However, with the anthropogenic production of ozone forming precursors (NO, NO2, and volatile organic compounds) through the combustion of fossil fuels, elevated levels of ozone in the troposphere have been found. Motor vehicle exhaust is a significant source of these ozone forming precursors: NO, NO2, and volatile organic compounds (VOCs). For example, mobile sources make up nearly 60% of NO + NO2 emissions. At the high temperatures found in a car’s combustion chamber, nitrogen and oxygen from the air react to form nitric oxide (NO) and nitrogen dioxide (NO2):

 Environmental Science


JoVE 10350

Source: Vy M. Dong and Zhiwei Chen, Department of Chemistry, University of California, Irvine, CA

This experiment will demonstrate the hydrogenation of chalcone as an example of an alkene hydrogenation reaction (Figure 1). In this experiment, palladium on carbon (Pd/C) will be used as a heterogeneous catalyst for the process. A balloon will be used to supply the hydrogen atmosphere. Figure 1: Diagram showing the hydrogenation of chalcone to 3-phenylpropiophenone.

 Organic Chemistry II

Dye-sensitized Solar Cells

JoVE 10328

Source: Tamara M. Powers, Department of Chemistry, Texas A&M University

Today's modern world requires the use of a large amount of energy. While we harness energy from fossil fuels such as coal and oil, these sources are nonrenewable and thus the supply is limited. To maintain our global lifestyle, we must extract energy from renewable sources. The most promising renewable source, in terms of abundance, is the sun, which provides us with more than enough solar energy to fully fuel our planet many times over. So how do we extract energy from the sun? Nature was the first to figure it out: photosynthesis is the process whereby plants convert water and carbon dioxide to carbohydrates and oxygen. This process occurs in the leaves of plants, and relies on the chlorophyll pigments that color the leaves green. It is these colored molecules that absorb the energy from sunlight, and this absorbed energy which drives the chemical reactions. In 1839, Edmond Becquerel, then a 19-year old French physicist experimenting in his father's lab, created the first photovoltaic cell. He illuminated an acidic solution of silver chloride that was connected to platinum electrodes which generated a voltage and current.1 Many discoveries and advances wer

 Inorganic Chemistry

More Results...