Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by section

 
 
RNA-Induced Silencing Complex: A multicomponent, ribonucleoprotein complex comprised of one of the family of Argonaute proteins and the "guide strand" of the one of the 20- to 30-nucleotide small RNAs. Risc cleaves specific RNAs, which are targeted for degradation by homology to these small RNAs. Functions in regulating gene expression are determined by the specific argonaute protein and small RNA including siRNA (RNA, Small interfering), miRNA (Microrna), or piRNA (Piwi-interacting rna).

Utilizing Functional Genomics Screening to Identify Potentially Novel Drug Targets in Cancer Cell Spheroid Cultures

1The Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer, The Institute of Cancer Research, 2Division of Molecular Pathology, The Institute of Cancer Research, 3Institute of Cancer Sciences, University of Manchester

JoVE 54738


 Cancer Research

Adenofection: A Method for Studying the Role of Molecular Chaperones in Cellular Morphodynamics by Depletion-Rescue Experiments

1Département de biologie moléculaire, biochimie médicale et pathologie, Faculté de médecine, Centre de recherche sur le cancer de l'Université Laval, 2Oncology, Centre de recherche du CHU de Québec, Université Laval, 3Laboratoire d'études moléculaires des valvulopathies (LEMV), Groupe de recherche en valvulopathies (GRV), Quebec Heart and Lung Institute/Research Center, 4Department of Surgery, Université Laval

JoVE 54557


 Biology

Lignin Down-regulation of Zea mays via dsRNAi and Klason Lignin Analysis

1The School of Plant Sciences, University of Arizona, 2Department of Chemical Engineering and Materials Science, DOE Great Lakes Bioenergy Research Center, Michigan State University, 3The Institute for Sustainable and Renewable Resources, The Institute for Advanced Learning and Research, 4Department of Plant, Soil and Microbial Sciences, Michigan State University

JoVE 51340


 Bioengineering

High-throughput Quantitative Real-time RT-PCR Assay for Determining Expression Profiles of Types I and III Interferon Subtypes

1Center for Biologics Evaluation and Research, US Food and Drug Administration, 2Center for Drug Evaluation and Research, US Food and Drug Administration

JoVE 52650


 Immunology and Infection

Analysis of Chromosome Segregation, Histone Acetylation, and Spindle Morphology in Horse Oocytes

1Department of Health, Animal Science and Food Safety, University of Milan, 2IRCCS. Istituto Ortopedico Galeazzi, 3PRC, CNRS, IFCE, Université de Tours, INRA, 4PAO, INRA, 5Clinique des Animaux de Compagnie et des Équidés, Université de Liège, 6University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania

JoVE 55242


 Developmental Biology

A Primary Neuron Culture System for the Study of Herpes Simplex Virus Latency and Reactivation

1Department of Microbiology, New York University School of Medicine, 2Molecular Neurobiology Program, Skirball Institute for Biomolecular Medicine, New York University School of Medicine, 3Department of Otolaryngology, New York University School of Medicine, 4Department of Cell Biology, New York University School of Medicine, 5Department of Physiology and Neuroscience, New York University School of Medicine, 6Department of Psychiatry, New York University School of Medicine, 7Center for Neural Science, New York University School of Medicine

JoVE 3823


 Immunology and Infection

Identification of Critical Conditions for Immunostaining in the Pea Aphid Embryos: Increasing Tissue Permeability and Decreasing Background Staining

1Department of Entomology, National Taiwan University, 2Institute of Biotechnology, National Taiwan University, 3Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, 4Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica

JoVE 53883


 Developmental Biology

Application of Two-spotted Spider Mite Tetranychus urticae for Plant-pest Interaction Studies

1Department of Biology, The University of Western Ontario, 2Instituto de Ciencias de la Vid y el Vino, 3Department of Crop Protection, Ghent University, 4Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam

JoVE 51738


 Environment

An Engineered Split-TET2 Enzyme for Chemical-inducible DNA Hydroxymethylation and Epigenetic Remodeling

1Centre for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, 2Centre for Translational Cancer Research, Institute of Biosciences and Technology, Department of Medical Physiology, College of Medicine, Texas A&M University

Video Coming Soon

JoVE 56858


 JoVE In-Press

RNAi in C. elegans

JoVE 5105

RNA interference (RNAi) is a widely used technique in which double stranded RNA is exogenously introduced into an organism, causing knockdown of a target gene. In the nematode, C. elegans, RNAi is particularly easy and effective because it can be delivered simply by feeding the worms bacteria that express double stranded RNA (dsRNA) that is complementary to a gene of interest. First, this video will introduce the concept of RNA interference and explain how it causes targeted gene knockdown. Then, we will demonstrate a protocol for using RNAi in C. elegans, which includes preparation of the bacteria and RNAi worm plates, culturing of the worms, and how to assess the effects of RNAi on the worms. RNAi is frequently used to perform reverse genetic screens in order to reveal which genes are important to carry out specific biological processes. Furthermore, automated reverse genetic screens allow for the efficient knockdown and analysis of a large collection of genes. Lastly, RNAi is often used to study the development of C. elegans. Since its discovery, scientists have used RNAi to make tremendous progress on the understanding of many biological phenomena.


 Biology I

Results below contain some, but not all of your search terms.
123456789108
More Results...