Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by journal section

Filter by science education

 
 
Subclavian Artery: Artery arising from the brachiocephalic trunk on the right side and from the arch of the aorta on the left side. It distributes to the neck, thoracic wall, spinal cord, brain, meninges, and upper limb.

The Rabbit Blood-shunt Model for the Study of Acute and Late Sequelae of Subarachnoid Hemorrhage: Technical Aspects

1Department of Intensive Care Medicine, University and Bern University Hospital (Inselspital), 2Department of Neurosurgery, Kantonsspital Aarau, 3Laboratories for Neuroscience Research in Neurosurgery, Boston Children's Hospital, 4Harvard Medical School, Boston Children's Hospital, 5Department of Neurosurgery, University and Bern University Hospital (Inselspital), 6Department of Neurosurgery, University Hospital Cologne, 7Institute of Pathology, Länggasse Bern

JoVE 52132


 Medicine

Central Venous Catheter Insertion: Subclavian Vein

JoVE 10241

Source: James W Bonz, MD, Emergency Medicine, Yale School of Medicine, New Haven, Connecticut, USA

Central venous access is necessary in a multitude of clinical situations for hemodynamic monitoring, medication delivery, and blood sampling. There are three veins in the body that are accessed for central venous cannulation: the internal jugular, the subclavian, and the femoral vein. Central venous access via the subclavian vein has several advantages over other possible locations. The subclavian central venous catheter (CVC) placement is associated with lower infection and thrombosis rate than internal jugular and femoral CVC. Subclavian line can be placed quickly using anatomic landmarks and are often performed in trauma settings when cervical collars obliterate the access to the internal jugular (IJ) vein. The most significant disadvantage of the subclavian access is the risk of pneumothorax due to the anatomic proximity to the dome of the lung, which lies just superficial to the subclavian vein. In addition, in the event of an inadvertent arterial puncture, the access to the subclavian artery is impeded by the clavicle, which makes it difficult to effectively compress the vessel. Successful placement of the subclavian CVC requires good working understanding of the tar


 Emergency Medicine and Critical Care

Calcification of Vascular Smooth Muscle Cells and Imaging of Aortic Calcification and Inflammation

1Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, 2Cardiovascular Research Center and Cardiology Division of the Department of Medicine, Massachusetts General Hospital, 3Cardiovascular Division, Brigham and Women's Hospital, 4Harvard Medical School, 5Department of Anesthesiology, Uniklinik RWTH Aachen, RWTH Aachen University, 6Center for Immunology and Inflammatory Diseases and the Division of Rheumatology, Allergy, and Immunology of the Department of Medicine, Massachusetts General Hospital

JoVE 54017


 Medicine

Biodegradable Magnesium Stent Treatment of Saccular Aneurysms in a Rat Model - Introduction of the Surgical Technique

1Department of Neurosurgery, Kantonsspital Aarau, 2Neuro Lab, Research Group for Experimental Neurosurgery and Neurocritical Care, Department of Intensive Care Medicine, University Hospital and University of Bern, 3Division of Neuroradiology, Department of Radiology, Kantonsspital Aarau

JoVE 56359


 Neuroscience

Central Venous Catheter Insertion: Femoral Vein

JoVE 10240

Source: James W Bonz, MD, Emergency Medicine, Yale School of Medicine, New Haven, Connecticut, USA

Central venous access is necessary in a multitude of clinical situations, including vascular access, vasopressor and caustic medication delivery, central venous pressure monitoring, volume resuscitation, total parental nutrition, hemodialysis, and frequent phlebotomy. There are three veins in the body that are accessed for central venous cannulation: the internal jugular, the subclavian, and the femoral. Each of these vessels has distinct advantages and disadvantages with unique anatomical considerations. Femoral vein cannulation can be easily performed both under ultrasound guidance and using the surface landmarks; therefore, femoral access is often used when emergent placement of a central venous catheter (CVC) is needed (such as in the case of medical codes and trauma resuscitations). In addition, cannulation of the femoral artery allows one to simultaneously perform other procedures needed for stabilization, such as cardiopulmonary resuscitation (CPR) and intubation. Successful placement of a femoral CVC requires working understanding of the target anatomy, access to with procedural ultrasound, and fluidity in the Seldinger technique. Seld


 Emergency Medicine and Critical Care

Shunt Surgery, Right Heart Catheterization, and Vascular Morphometry in a Rat Model for Flow-induced Pulmonary Arterial Hypertension

1Center for Congenital Heart Diseases, Department of Pediatric Cardiology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, 2Research and Development Facility, University Medical Center Groningen, University of Groningen

JoVE 55065


 Medicine

Central Venous Catheter Insertion: Internal Jugular

JoVE 10237

Source: James W Bonz, MD, Emergency Medicine, Yale School of Medicine, New Haven, Connecticut, USA

Central venous access is necessary in a multitude of clinical situations, including vascular access, vasopressor and caustic medication delivery, central venous pressure monitoring, intravascular device delivery (pacing wires, Swann-Ganz catheters), volume resuscitation, total parental nutrition, hemodialysis, and frequent phlebotomy. Safe reliable placement of a central venous catheter (CVC) in the internal jugular (IJ) vein using ultrasound guidance has become the standard of care. It is therefore imperative to understand the anatomy, the relationship between the IJ and the carotid artery, and their appearance on ultrasound. It is also necessary to have the psychomotor skills of vessel cannulation under ultrasound guidance. Seldinger technique is an introduction of a device into the body over a guide wire, which is inserted through a thin-walled needle. In the case of CVC insertion, the device is an intravascular catheter and the target vessel is a central vein. First, the target vessel is cannulated with an 18 gauge thin-walled needle. A guide wire is then passed thought the needle until it is appropriately positioned within the vessel. The needle is removed,


 Emergency Medicine and Critical Care

A Novel Microsurgical Model for Heterotopic, En Bloc Chest Wall, Thymus, and Heart Transplantation in Mice

1Johns Hopkins University School of Medicine, 2Burn and Complex Wound Center, 3Section of Plastic and Reconstructive Surgery, University of Chicago Medical Center, 4Division of Plastic, Reconstructive, and Maxillofacial Surgery, R Adams Cowley Shock Trauma Center, 5Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, 6Vascularized Composite Allotransplantation (VCA) Lab, Johns Hopkins University School of Medicine

JoVE 53442


 Medicine

Needle Thoracostomy

JoVE 10233

Source: Rachel Liu, BAO, MBBCh, Emergency Medicine, Yale School of Medicine, New Haven, Connecticut, USA

A tension pneumothorax is a life-threatening situation in which excess air is introduced into the pleural space surrounding the lung, either through trauma to the chest cavity or as a spontaneous leak of air from the lung itself. Air trapped within the pleural space causes separation of the lung from the chest wall, disrupting normal breathing mechanisms. Pneumothorax may be small without conversion to tension, but when there is a significant and expanding amount of air trapped in the pleural cavity, the increasing pressure from this abnormal air causes the lung to shrink and collapse, leading to respiratory distress. This pressure also pushes the mediastinum (including the heart and great vessels) away from its central position, causing inability of blood to return to the heart and diminishing the cardiac output. Tension pneumothoraces cause chest pain, extreme shortness of breath, respiratory failure, hypoxia, tachycardia, and hypotension. They need to be relieved emergently when a patient is in extremis. Tension pneumothoraces are definitively managed by procedures that allow removal of trapped air, such as insertion of a chest tube. However, materials for chest tube placement are typically


 Emergency Medicine and Critical Care

A Model of Disturbed Flow-Induced Atherosclerosis in Mouse Carotid Artery by Partial Ligation and a Simple Method of RNA Isolation from Carotid Endothelium

1Department of Medicine, Division of Cardiology, Emory University, 2Coulter Department of Biomedical Engineering, Georgia Tech and Emory University, 3Department of Bioinspired Science, Ewha Womans University

JoVE 1861


 Medicine

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.

Evaluation of Vascular Control Mechanisms Utilizing Video Microscopy of Isolated Resistance Arteries of Rats

1Department of Physical Therapy, Marquette University, 2Medical College of Wisconsin, 3Department of Physiology, Medical College of Wisconsin, 4Graduate Programs of Nurse Anesthesia, Texas Wesleyan University, 5Office of Research, Medical College of Wisconsin

JoVE 56133


 Medicine

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.

Ultrasound Assessment of Flow-Mediated Dilation of the Brachial and Superficial Femoral Arteries in Rats

1Department of Internal Medicine, University of Utah, 2Department of Kinesiology and Health Education, University of Texas at Austin, 3Division of Nephrology and Hypertension, University of Utah, 4Department of Biochemistry, University of Utah, 5Department of Exercise and Sport Science, University of Utah, 6Geriatric Research Education and Clinical Center, Department of Veterans Affairs

JoVE 54762


 Medicine

Results below contain some, but not all of your search terms.

Evaluation of a Novel Laser-assisted Coronary Anastomotic Connector - the Trinity Clip - in a Porcine Off-pump Bypass Model

1Department of Cardiothoracic Surgery, University Medical Center Utrecht, 2Vascular Connect b.v., 3Department of Neurosurgery, University Medical Center Utrecht, 4Department of Experimental Cardiology, University Medical Center Utrecht

JoVE 52127


 Medicine

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.

Near-infrared Navigation System for Real-time Visualization of Blood Flow in Vascular Grafts

1Department of Radiology, University of Missouri, 2Office of Animal Resources, University of Missouri, 3Bioengineering, University of Missouri, 4Biomedical Science, University of Missouri, 5Surgery - Division of Cardiothoracic Surgery, University of Missouri, 6MU-iCATS, University of Missouri, 7Medical Pharmacology and Physiology, University of Missouri

Video Coming Soon

JoVE 54927


 JoVE In-Press

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.

A Model of Free Tissue Transfer: The Rat Epigastric Free Flap

1Anatomy Department, NOVA Medical School, Universidade NOVA de Lisboa, 2Plastic and Reconstructive Surgery Department and Burn Unit, Centro Hospitalar de Lisboa Central - Hospital de São José, 3UCIBIO, Life Sciences Department, Faculty of Sciences and Technology, Universidade NOVA de Lisboa, 4CEDOC, NOVA Medical School, Universidade NOVA de Lisboa, 5Physics Department, Faculty of Sciences and Technology, LIBPhys, 6Pathology Department, Centro Hospitalar de Lisboa Central – Hospital de São José

JoVE 55281


 Medicine

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.

Measuring Ascending Aortic Stiffness In Vivo in Mice Using Ultrasound

1Department of Biomedical Engineering, Johns Hopkins University, 2Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, 3Department of Medicine (Cardiology), Johns Hopkins University, 4The Australian School of Advanced Medicine, Macquarie University

JoVE 52200


 Medicine

12345678914
More Results...