Back to chapter

7.15:

Elektronenconfiguratie van Atomen

JoVE Core
Chemistry
A subscription to JoVE is required to view this content.  Sign in or start your free trial.
JoVE Core Chemistry
Electron Configuration of Multielectron Atoms

Languages

Share

Het Pauli-uitsluitingsprincipe, Hund’s regel van maximale multipliciteit en het aufbau-principe kunnen worden uitgebreid om de elektronenconfiguratie van elk element voor te stellen. Overweeg om de elektronenconfiguratie voor natrium te schrijven. De kernelektronenverdeling in natrium is precies die van het voorgaande element, neon.Het enkele valentie-elektron bezet de 3s-orbitaal. Neon behoort tot de achttiende kolom van het periodiek systeem de edelgassen. De elektronenconfiguraties van deze elementen vergemakkelijken de gecondenseerde weergave van de elektronenconfiguratie voor andere elementen.Voor elk element is de kernelektronenconfiguratie dezelfde als die van het edelgas dat eraan voorafgaat in het periodiek systeem. De elektronenconfiguratie van natrium kan bijvoorbeeld worden geschreven als neonkern, 3s1. De kernelektronenconfiguratie van kalium is 1s22s22p63s23p6, waardoor er één valentie-elektron overblijft.Gaat het negentiende elektron nu de 3D-subschil binnen? Bedenk dat de 4s-subschil een aanzienlijk penetrerend vermogen heeft, wat er vaak toe leidt dat deze een lagere energie heeft dan de 3D-subschil. Het aufbau-principe zou daarom inhouden dat de 4s-subschil vult voorafgaand aan de 3d-subschil.De kern van het voorgaande edelgas, argon, wordt gebruikt om de gecondenseerde configuratie te schrijven. Hoewel deze principes een startpunt bieden, moeten de feitelijke elektronenconfiguraties experimenteel worden bevestigd. In verschillende elementen van de overgangselementen, lanthaniden en actiniden, bevinden de orbitale energieën zich in een andere relatieve volgorde, en het aufbau-principe wordt mogelijk niet volledig gevolgd.In de overgangselementen hebben de subschillen 3d en 4s vergelijkbare energieën. De 4s-subschil is vaak volledig gevuld. In scandium is de elektronenconfiguratie bijvoorbeeld argonkern, 4s23d1.In zink zijn de 4s en 3d subschillen tot hun maximale capaciteit gevuld. De grondtoestanden van sommige metalen, zoals chroom en koper, hebben echter enkelvoudige 4s-orbitalen bezetting. Chroom valt vooral op doordat twee subschillen gedeeltelijk gevuld zijn, wat afwijkt van het aufbau-principe.Over de lanthanidenreeks, die zich uitstrekt door cerium tot lutetium, hebben de 6s en 4f subschillen vergelijkbare energieën. De elektronenconfiguratie voor neodymiumis xenonkern, 6s24f4. Ondertussen heeft cerium een ongebruikelijke elektronenconfiguratie van xenonkern, 6s24f15d1 omdat de 6s, 4f en 5d subschillen ongebruikelijk hetzelfde qua energie zijn.

7.15:

Elektronenconfiguratie van Atomen

The alkali metal sodium (atomic number 11) has one more electron than the neon atom. This electron must go into the lowest-energy subshell available, the 3s orbital, giving a 1s22s22p63s1 configuration. The electrons occupying the outermost shell orbital(s) (highest value of n) are called valence electrons, and those occupying the inner shell orbitals are called core electrons. Since the core electron shells correspond to noble gas electron configurations, we can abbreviate electron configurations by writing the noble gas that matches the core electron configuration, along with the valence electrons in a condensed format. For sodium, the symbol [Ne] represents core electrons, (1s22s22p6), and the abbreviated or condensed configuration is [Ne]3s1.

Similarly, the abbreviated configuration of lithium can be represented as [He]2s1, where [He] represents the configuration of the helium atom, which is identical to that of the filled inner shell of lithium. Writing the configurations in this way emphasizes the similarity of the configurations of lithium and sodium. Both atoms, which are in the alkali metal family, have only one electron in a valence s subshell outside a filled set of inner shells.

Li: [He]2s1

Na: [Ne]3s1

The alkaline earth metal magnesium (atomic number 12), with its 12 electrons in a [Ne]3s2 configuration, is analogous to its family member beryllium, [He]2s2. Both atoms have a filled s subshell outside of their filled inner shells. Aluminum (atomic number 13), with 13 electrons and the electron configuration [Ne]3s23p1, is analogous to its family member boron, [He]2s22p1.

The electron configurations of silicon (14 electrons), phosphorus (15 electrons), sulfur (16 electrons), chlorine (17 electrons), and argon (18 electrons) are analogous in the electron configurations of their outer shells to their corresponding family members carbon, nitrogen, oxygen, fluorine, and neon, respectively, except that the principal quantum number of the outer shell of the heavier elements has increased by one to n = 3.

When we come to the next element in the periodic table, the alkali metal potassium (atomic number 19), we might expect that we would begin to add electrons to the 3d subshell. However, all available chemical and physical evidence indicates that potassium is like lithium and sodium, and that the next election is not added to the 3d level but is, instead, added to the 4s level. As discussed previously, the 3d orbital with no radial nodes is higher in energy because it is less penetrating and more shielded from the nucleus than the 4s, which has three radial nodes. Thus, potassium has an electron configuration of [Ar]4s1. Hence, potassium corresponds to Li and Na in its valence shell configuration. The next electron is added to complete the 4s subshell and calcium has an electron configuration of [Ar]4s2. This gives calcium an outer-shell electron configuration corresponding to that of beryllium and magnesium.

In the case of Cr and Cu, we find that half-filled and completely filled subshells apparently represent conditions of preferred stability. This stability is such that electron shifts from the 4s into the 3d orbital to gain the extra stability of a half-filled 3d subshell (in Cr) or a filled 3d subshell (in Cu). Other exceptions also occur. For example, niobium (Nb, atomic number 41) is predicted to have the electron configuration [Kr]5s24d3. Experimentally, we observe that its ground-state electron configuration is actually [Kr]5s144. We can rationalize this observation by saying that the electron-electron repulsions experienced by pairing the electrons in the 5s orbital are larger than the gap in energy between the 5s and 4d orbitals. There is no simple method to predict the exceptions for atoms where the magnitude of the repulsions between electrons is greater than the small differences in energy between subshells.

This text is adapted from Openstax, Chemistry 2e, Section 6.4: Electronic Structure of Atoms.