Back to chapter

9.6:

Covalente Bindingen en Lewis-structuren

JoVE Core
Chemistry
A subscription to JoVE is required to view this content.  Sign in or start your free trial.
JoVE Core Chemistry
Covalent Bonding and Lewis Structures

Languages

Share

Covalente bindingen worden gevormd tussen niet-metalen door het delen van valentie-elektronen. Maar waarom delen niet-metalen elektronen liever dan ze over te dragen zoals bij ionische bindingen? Niet-metalen hebben hoge ionisatie-energieën, waardoor het moeilijk is om valentie-elektronen van het ene atoom naar het andere over te brengen.Denk aan een molecuul ammoniak. Het stikstofatoom heeft nog drie elektronen nodig om een octet te bereiken, en het waterstofatoom heeft een elektron nodig om een duet te bereiken. Daarom bindt het stikstofatoom zich met drie waterstofatomen zodat zowel stikstof als waterstof stabiele elektronenconfiguraties bereiken.Omdat elk van deze bindingen één paar elektronen deelt, wordt dit een enkele binding genoemd. Het gedeelde elektronenpaar in de covalente binding wordt een bindingspaar genoemd. De valentie-elektronen die niet deelnemen aan binding, worden het vrije paar of niet-bindende elektronen genoemd.Met 6 valentie-elektronen hebben zuurstofatomen nog twee elektronen nodig om een octet te bereiken. Daarom delen twee zuurstofatomen twee elektronenparen die een dubbele binding vormen. Stikstof, aan de andere kant, deelt de drie ongepaarde elektronen in zijn diatomische vorm, waardoor een drievoudige binding ontstaat.Enkele en meervoudige bindingen verschillen in termen van bindingslengte en sterkte. Drievoudige bindingen zijn korter dan dubbele bindingen, die korter zijn dan enkele bindingen. De bindingssterkte neemt toe met bindingsmultipliciteit.Dit is de reden waarom het moeilijk is om de drievoudige binding in stikstof te verbreken, waardoor het relatief niet-reactief wordt. Het Lewis-model helpt de structuur en stabiliteit van moleculen te voorspellen. Volgens het Lewis-model is H2O een stabiel molecuul;omdat zowel zuurstof als waterstof stabiele elektronenconfiguraties hebben bereikt.Als de zuurstof elektronen deelt met slechts één waterstofatoom, is het resulterende OH-molecuul niet stabiel omdat zuurstof slechts 7 valentie-elektronen heeft en het octet niet kan bereiken. Als er echter een extra elektron aan de zuurstof wordt toegevoegd om het octet te voltooien, wordt het resulterende hydroxide-ion stabiel met een negatieve lading. Covalente bindingen zijn directioneel omdat de gedeelde elektronen twee specifieke atoomparen verbinden.Ionische bindingen daarentegen zijn niet-directioneel en houden verschillende ionen in het rooster vast. In een covalente verbinding worden de individuele moleculen dus als fundamentele eenheden beschouwd.

9.6:

Covalente Bindingen en Lewis-structuren

Compared to ionic bonds, which results from the transfer of electrons between metallic and nonmetallic atoms, covalent bonds result from the mutual attraction of atoms for a “shared” pair of electrons. 

Covalent bonds are formed between two atoms when both have similar tendencies to attract electrons to themselves (i.e., when both atoms have identical or fairly similar ionization energies and electron affinities). 

Physical Properties of Covalent Compounds

Compounds that contain covalent bonds exhibit different physical properties than ionic compounds. Because the attraction between molecules, which are electrically neutral, is weaker than that between electrically charged ions, covalent compounds generally have much lower melting and boiling points than ionic compounds. In fact, many covalent compounds are liquids or gases at room temperature, and, in their solid states, they are typically much softer than ionic solids. Furthermore, whereas ionic compounds are good conductors of electricity when dissolved in water, most covalent compounds are insoluble in water; since they are electrically neutral, they are poor conductors of electricity in any state.

Formation of Covalent Bonds

Nonmetal atoms frequently form covalent bonds with other nonmetal atoms. For example, the hydrogen molecule, H2, contains a covalent bond between its two hydrogen atoms. Two separate hydrogen atoms with particular potential energy approach each other, their valence orbitals (1s) begin to overlap. The single electrons on each hydrogen atom then interact with both atomic nuclei, occupying the space around both atoms. The strong attraction of each shared electron to both nuclei stabilizes the system, and the potential energy decreases as the bond distance decreases. If the atoms continue to approach each other, the positive charges in the two nuclei begin to repel each other, and the potential energy increases. The bond length is determined by the distance at which the lowest potential energy is achieved.

It is essential to remember that energy must be added to break chemical bonds (an endothermic process), whereas forming chemical bonds releases energy (an exothermic process). In the case of H2, the covalent bond is very strong; a large amount of energy, 436 kJ, must be added to break the bonds in one mole of hydrogen molecules and cause the atoms to separate:

Eq1

Conversely, the same amount of energy is released when one mole of H2 molecules forms from two moles of H atoms:

Eq2

Lewis Structures

Lewis symbols can be used to indicate the formation of covalent bonds, which are shown in Lewis structures, drawings that describe the bonding in molecules and polyatomic ions. For example, when two chlorine atoms form a chlorine molecule, they share one pair of electrons:

Figure1

The Lewis structure indicates that each Cl atom has three pairs of electrons that are not used in bonding (called lone pairs) and one shared pair of electrons (written between the atoms). A dash (or line) is sometimes used to indicate a shared pair of electrons:  Cl—Cl.

  • A single shared pair of electrons is called a single bond. Each Cl atom interacts with eight valence electrons: the six in the lone pairs and the two in the single bond.
  • However, a pair of atoms may need to share more than one pair of electrons in order to achieve the requisite octet. A double bond forms when two pairs of electrons are shared between a pair of atoms, as between the carbon and oxygen atoms in CH2O (formaldehyde) and between the two carbon atoms in C2H4 (ethylene). 
    Figure2
  • A triple bond forms when three electron pairs are shared by a pair of atoms, as in carbon monoxide (CO) and the cyanide ion (CN–).
    Figure3

The periodic table can be used to predict the number of valence electrons in an atom and the number of bonds that will be formed to reach an octet. Group 18 elements such as Argon and Helium have filled electron configuration and thus rarely participate in chemical bonding. However, atoms from group 17, such as bromine or iodine, need only one electron to reach octet. Hence atoms belonging to group 17 can form a single covalent bond. The atoms of group 16 need 2 electrons to reach an octet; hence they can form two covalent bonds. Similarly, carbon that belongs to group 14, needs 4 more electrons to reach an octet; thus carbon can form four covalent bonds. 

This text is adapted from Openstax, Chemistry 2e, Section 7.2: Covalent Bonds and Openstax, Chemistry 2e, Section 7.3: Lewis Symbols and Structures.