Back to chapter

12.8:

蒸気圧の低下

JoVE Core
Chemistry
A subscription to JoVE is required to view this content.  Sign in or start your free trial.
JoVE Core Chemistry
Vapor Pressure Lowering

Languages

Share

Some properties of a solution depend on the type of solute. An aqueous solution of hydrochloric acid turns a pH paper red, while a sodium hydroxide solution turns it blue. Other properties of a solution depend only on the concentration or the number of particles of the solute rather than the type of solute. These are called colligative properties. One such property is the vapor pressure of a solution. The vapor pressure of a liquid is the pressure of the gas above the liquid resulting from evaporation when the liquid and the gas are in a dynamic equilibrium in a closed container. The vapor pressure of the solution is always less than that of the pure solvent. Consider a solution made when a non-volatile solute, that is one with no measurable vapor pressure, is added to a volatile solvent. In a pure solvent, the entire surface of the liquid is solvent particles. Some of these particles escape into the gaseous state to create vapor, while some of the gas molecules above condense back into a liquid state. When the rate of vaporization equals the rate of condensation, a dynamic equilibrium is reached. In a solution, the liquid surface has both solute and solvent particles. So, a smaller number of the surface solvent particles can vaporize. The rate of condensation decreases to re-establish the dynamic equilibrium with the diminished rate of vaporization, now with a lower concentration of solvent particles in the gaseous state. The vapor pressure of a solution can be calculated by Raoult’s law, which states that the partial pressure of a solution is equal to the mole fraction of the solvent, X, multiplied by the vapor pressure of the pure solvent, Pº. For example, a solution contains 1.5 mol of a non-volatile solute such as glycerol and 3.5 mol of water at 25 °C. The mole fraction of the solvent is 0.70 and the vapor pressure of pure water is 23.8 torr. The vapor pressure of the solution can be calculated using Raoult’s law to be 16.7 torr, 70% of the vapor pressure of the pure solvent. An equation for vapor pressure lowering, ΔP, can also be derived from Raoult’s Law. Since the mole fraction of the solvent is equal to one minus the mole fraction of the solute, it can be substituted into Raoult’s Law. This can be used to create an equation where vapor pressure lowering is directly proportional to the mole fraction of the solute. Recalling the previous example, the mole fraction of the solute is 1 minus the mole fraction of the solvent. Plugging in the value, the mole fraction of the solute is 0.3. Given that the vapor pressure of pure water is 23.8 torr, the lowering of vapor pressure is calculated to be 7.14 torr. Adding ΔP and the vapor pressure of the solution, the vapor pressure of the pure solvent is obtained

12.8:

蒸気圧の低下

液体の平衡蒸気圧とは、気化と凝縮が同じ割合で起こっているときに、その気体相が及ぼす圧力のことです。

 Eq1

揮発性の液体に不揮発性の物質を溶かすと、液体の蒸気圧は降下します。この現象は、液体の気化・凝縮過程における溶質分子の影響を考慮することで説明できます。気化するためには、溶液の表面に溶媒分子が存在しなければなりません。溶質が存在すると、溶媒分子が利用できる表面積が減少するため、溶媒の気化速度が低下します。凝縮の速度は溶質の存在に影響されないので、正味の結果として、気相中の溶媒分子の数が少ない(つまり、蒸気圧が低い)状態で、気化-凝縮の平衡が達成されることになります。

この解釈は有用ですが、蒸気圧低下の衝突的性質のいくつかの重要な側面を説明していません。より厳密に説明するには、エントロピーという性質を用います。液体の蒸気圧の低下を理解するためには、溶媒と溶質が別々の相であるのに比べて、溶液中の物質はより分散した性質を持っているため、溶媒分子を効果的に安定させ、その気化を妨げる役割を果たしていることに注意すれば十分です。その結果、蒸気圧が低くなり、沸点が高くなります。

溶液成分の蒸気圧とその濃度の関係は、ラウールの法則で表されます。理想的な溶液中の任意の成分が及ぼす分圧は、純粋な成分の蒸気圧に溶液中のモル分率を乗じたものに等しいです。

 Eq2

ここで、PAは溶液中の成分Aが及ぼす分圧、PºAは純粋なAの蒸気圧、XAは溶液中のAのモル分率です。

気体混合物の全圧力は、すべての成分の分圧の合計に等しい(ダルトン分圧の法則)とすると、i成分を含む溶液が発揮する全蒸気圧は以下のようになります。

 Eq3

不揮発性物質とは、蒸気圧が無視できるほど小さい(Pº ≈ 0)物質のことで、不揮発性溶質のみを含む溶液の上の蒸気圧は、溶媒のみによるものです。

 Eq4

上記の文章は以下から引用しました。Openstax, Chemistry 2e, Section 11.4: colligative properties.

Suggested Reading

  1. Andrews, Frank C. "Colligative properties of simple solutions." Science 194, no. 4265 (1976): 567-571.
  2. Lindsay Jr, W. T., and Chu Tisin Liu. “Vapor pressure lowering of aqueous solutions at elevated temperatures.” Westinghouse Research Laboratories, Pittsburgh, Pennsylvania, 1968.
  3. Chinard, Francis P. "Colligative properties." Journal of Chemical Education 32, no. 7 (1955): 377.