В этой статье мы представляем микрожидкостных основе метода удержания частиц на основе гидродинамических потоков. Мы демонстрируем стабильный захват частиц в точке застоя жидкости с помощью механизма управления с обратной связью, что позволяет камере и микроманипуляция произвольных частиц в интегрированной микроустройство.
The ability to confine and manipulate single particles in free solution is a key enabling technology for fundamental and applied science. Methods for particle trapping based on optical, magnetic, electrokinetic, and acoustic techniques have led to major advancements in physics and biology ranging from the molecular to cellular level. In this article, we introduce a new microfluidic-based technique for particle trapping and manipulation based solely on hydrodynamic fluid flow. Using this method, we demonstrate trapping of micro- and nano-scale particles in aqueous solutions for long time scales. The hydrodynamic trap consists of an integrated microfluidic device with a cross-slot channel geometry where two opposing laminar streams converge, thereby generating a planar extensional flow with a fluid stagnation point (zero-velocity point). In this device, particles are confined at the trap center by active control of the flow field to maintain particle position at the fluid stagnation point. In this manner, particles are effectively trapped in free solution using a feedback control algorithm implemented with a custom-built LabVIEW code. The control algorithm consists of image acquisition for a particle in the microfluidic device, followed by particle tracking, determination of particle centroid position, and active adjustment of fluid flow by regulating the pressure applied to an on-chip pneumatic valve using a pressure regulator. In this way, the on-chip dynamic metering valve functions to regulate the relative flow rates in the outlet channels, thereby enabling fine-scale control of stagnation point position and particle trapping. The microfluidic-based hydrodynamic trap exhibits several advantages as a method for particle trapping. Hydrodynamic trapping is possible for any arbitrary particle without specific requirements on the physical or chemical properties of the trapped object. In addition, hydrodynamic trapping enables confinement of a “single” target object in concentrated or crowded particle suspensions, which is difficult using alternative force field-based trapping methods. The hydrodynamic trap is user-friendly, straightforward to implement and may be added to existing microfluidic devices to facilitate trapping and long-time analysis of particles. Overall, the hydrodynamic trap is a new platform for confinement, micromanipulation, and observation of particles without surface immobilization and eliminates the need for potentially perturbative optical, magnetic, and electric fields in the free-solution trapping of small particles.
Текущий микрожидкостных методы манипуляции частиц на основе гидродинамического потока можно охарактеризовать как контакт основе или бесконтактные методы. Контакт-методов, основанных на использовании жидкости физически ограничивать и останавливать частицы против microfabricated стенок к?…
The authors have nothing to disclose.
Мы благодарим группу Kenis в университете штата Иллинойс в Урбана-Шампейн за полезные обсуждения и щедро обеспечение использования чистых объектов.
Эта работа финансировалась Путь к NIH премии Независимости П.И., под грант № 4R00HG004183-03 (Charles M. Шредер и Melikhan Tanyeri).
Работа выполнена при поддержке Национального научного фонда через стипендий для исследований Эрик М. Джонсон-Чаварриа.
Material Name | Type | Company | Catalogue Number | Comment |
---|---|---|---|---|
21 gauge blunt needle | Zephyrtronics | ZT-5-021-1-L | For punching port holes in PDMS | |
3 ml plastic syringe | BD | 309585 | For filling valve with oil | |
Si wafers | University Wafer | 3” P(100) single side polished 380 μm test grade | ||
Cover glass | VWR | 48404-428 | 24 x 40 mm #1.5 | |
DAQ card | National Instruments | PCI 6229 | ||
Fluorescent beads | Spherotech | FP-2056-2 | 2.2 μm Nile red | |
Fluorinert | 3M | FC 40 | Fluorinated carrier oil | |
Inverted Microscope | Olympus | IX-71 | ||
LabVIEW | National Instruments | Version 9.0f3 (32bit) | ||
Stereo Microscope | Leica | MZ6 | For aligning PDMS control layer to fluidic layer. | |
Mechanical Convection Oven | VWR | 1300U | For baking devices to create monolithic PDMS slabs with two layers. | |
Microfluidic tubing and connectors | Upchurch Scientific | 1/16 x .020 PFA tubing and super flangeless fittings | ||
PDMS | GE Silicones | RTV 615 A&B | ||
Plasma Chamber | Harrick | PDC-001 | ||
Pressure Transducer | Proportion Air | DQPV1 | ||
Spin Coater | Specialty Coating Systems | G3P-8 Spin Coat | ||
Photoresist | MicroChem | SU 8 2050 | ||
Syringe Pump | Harvard Apparatus | PHD 2000 Programmable | ||
Terminal Block | National Instruments | BNC 2110 | For analog output to pressure regulator and read out. | |
UV Collimated Light Source and Exposure System | OAI | Model 30 Enhanced Light Source |