Summary

जीवित कोशिकाओं में घटनाओं संकेत Unimolecular Biosensors की वास्तविक समय की निगरानी के लिए माइक्रोस्कोपी झल्लाहट

Published: August 20, 2012
doi:

Summary

Forster प्रतिध्वनि ऊर्जा हस्तांतरण (झल्लाहट) माइक्रोस्कोपी जीवित कोशिकाओं में घटनाओं संकेत संवाददाताओं से के रूप में विभिन्न biosensors का उपयोग करने की वास्तविक समय की निगरानी के लिए एक शक्तिशाली तकनीक है. यहाँ हम वर्णन कैसे एक स्वनिर्धारित epifluorescence बनाने के व्यावसायिक रूप से उपलब्ध उपकरणों और कैसे इसे इस्तेमाल के लिए प्रयोगों झल्लाहट झल्लाहट इमेजिंग प्रणाली.

Abstract

Förster resonance energy transfer (FRET) microscopy continues to gain increasing interest as a technique for real-time monitoring of biochemical and signaling events in live cells and tissues. Compared to classical biochemical methods, this novel technology is characterized by high temporal and spatial resolution. FRET experiments use various genetically-encoded biosensors which can be expressed and imaged over time in situ or in vivo1-2. Typical biosensors can either report protein-protein interactions by measuring FRET between a fluorophore-tagged pair of proteins or conformational changes in a single protein which harbors donor and acceptor fluorophores interconnected with a binding moiety for a molecule of interest3-4. Bimolecular biosensors for protein-protein interactions include, for example, constructs designed to monitor G-protein activation in cells5, while the unimolecular sensors measuring conformational changes are widely used to image second messengers such as calcium6, cAMP7-8, inositol phosphates9 and cGMP10-11. Here we describe how to build a customized epifluorescence FRET imaging system from single commercially available components and how to control the whole setup using the Micro-Manager freeware. This simple but powerful instrument is designed for routine or more sophisticated FRET measurements in live cells. Acquired images are processed using self-written plug-ins to visualize changes in FRET ratio in real-time during any experiments before being stored in a graphics format compatible with the build-in ImageJ freeware used for subsequent data analysis. This low-cost system is characterized by high flexibility and can be successfully used to monitor various biochemical events and signaling molecules by a plethora of available FRET biosensors in live cells and tissues. As an example, we demonstrate how to use this imaging system to perform real-time monitoring of cAMP in live 293A cells upon stimulation with a β-adrenergic receptor agonist and blocker.

Protocol

1. स्थापना एक झल्लाहट इमेजिंग खुर्दबीन सिद्धांत रूप में, किसी भी औंधा प्रतिदीप्ति सूक्ष्मदर्शी है जो प्रयोगशाला में उपलब्ध है और एक कैमरा बंदरगाह है अनुकूलित किया जा के लिए इमेजिंग झल्लाहट ?…

Discussion

इस प्रोटोकॉल में, हम दिखाना है कि कैसे एक साधारण कम लागत लेकिन शक्तिशाली झल्लाहट उपलब्ध biosensors की एक किस्म के साथ नियमित अनुप्रयोगों के लिए इमेजिंग प्रणाली का निर्माण करने के लिए. यहाँ प्रस्तुत प्रणाली CFP…

Disclosures

The authors have nothing to disclose.

Acknowledgements

लेखकों के लिए तकनीकी सहायता के लिए Anke Rüttgeroth और करीना Zimmermann धन्यवाद देना चाहूंगा. यह काम ड्यूश Forschungsgemeinschaft (अनुदान एनआई वॉन 1301/1-1) और गौटिंगेन मेडिकल सेंटर के विश्वविद्यालय ("समर्थक FUTURA" वॉन के लिए अनुदान) द्वारा समर्थित किया गया.

Materials

Name of the reagent/equipment Company Catalogue number Comments
BES Buffer Grade AppliChem A1062  
CaCl2 dihydrate Sigma-Aldrich C5010  
Glass coverslides Thermo Scientific 004710781 Diameter 24 mm
Glass-bottomed cell-culture dishes World Precision Instruments FD3510-100  
D-MEM medium Biochrom AG F0445  
Fetal calf serum (FCS) Thermo Scientific SH30073.02  
L-Glutamine Biochrom AG K0283  
HEPES Sigma H4034  
KCl Sigma P5405  
MgCl2 hexahydrate AppliChem A4425  
NaCl AppliChem A1149  
Na2HPO4 Sigma-Aldrich S9707  
Penicillin/Streptomycin Biochrom AG A2213  
Inverted fluorescent microscope e.g. Nikon Request at Nikon  
CoolLED CoolLED pE-100 440 nm
DualView Photometrics DV2-SYS  
DualView filter slider Photometrics 05-EM  
CFP/YFP filter set Chroma Technology 49052 without the emission filter
ORCA-03G camera Hamamatsu Photonics C8484-03G02  
Arduino I/O board Sparkfun Electronics DEV-00666  
Attofluor cell chamber Invitrogen A-7816  
Personal computer with WindowsXP or Windows7 system Any supplier   Include hard-drive with high capacity

References

  1. Zaccolo, M. Use of chimeric fluorescent proteins and fluorescence resonance energy transfer to monitor cellular responses. Circ. Res. 94, 866-873 (2004).
  2. Mehta, S., Zhang, J. Reporting from the field: genetically encoded fluorescent reporters uncover signaling dynamics in living biological systems. Annu. Rev. Biochem. 80, 375-401 (2011).
  3. Zhang, J., Campbell, R. E., Ting, A. Y., Tsien, R. Y. Creating new fluorescent probes for cell biology. Nat. Rev. Mol. Cell Biol. 3, 906-918 (2002).
  4. Miyawaki, A. Visualization of the spatial and temporal dynamics of intracellular signaling. Dev. Cell. 4, 295-305 (2003).
  5. Bunemann, M., Frank, M., Lohse, M. J. Gi protein activation in intact cells involves subunit rearrangement rather than dissociation. Proc. Natl. Acad. Sci. U.S.A. 100, 16077-16082 (2003).
  6. Kotlikoff, M. I. Genetically encoded Ca2+ indicators: using genetics and molecular design to understand complex physiology. J. Physiol. 578, 55-67 (2007).
  7. Willoughby, D., Cooper, D. M. Live-cell imaging of cAMP dynamics. Nat. Methods. 5, 29-36 (2008).
  8. Nikolaev, V. O., Lohse, M. J. Monitoring of cAMP synthesis and degradation in living cells. Physiology (Bethesda). 21, 86-92 (2006).
  9. Tanimura, A. Use of Fluorescence Resonance Energy Transfer-based Biosensors for the Quantitative Analysis of Inositol 1,4,5-Trisphosphate Dynamics in Calcium Oscillations. J. Biol. Chem. 284, 8910-8917 (2009).
  10. Nikolaev, V. O., Lohse, M. J. Novel techniques for real-time monitoring of cGMP in living cells. Handb. Exp. Pharmacol. , 229-243 (2009).
  11. Nausch, L. W., Ledoux, J., Bonev, A. D., Nelson, M. T., Dostmann, W. R. Differential patterning of cGMP in vascular smooth muscle cells revealed by single GFP-linked biosensors. Proc. Natl. Acad. Sci. U.S.A. 105, 365-370 (2008).
  12. Borner, S. FRET measurements of intracellular cAMP concentrations and cAMP analog permeability in intact cells. Nat. Protoc. 6, 427-438 (2011).
  13. Nikolaev, V. O., Bunemann, M., Hein, L., Hannawacker, A., Lohse, M. J. Novel single chain cAMP sensors for receptor-induced signal propagation. J. Biol. Chem. 279, 37215-37218 (2004).
  14. Hong, K. P., Spitzer, N. C., Nicol, X. Improved molecular toolkit for cAMP studies in live cells. BMC Res. Notes. 4, 241-24 (2011).
  15. Niino, Y., Hotta, K., Oka, K. Simultaneous live cell imaging using dual FRET sensors with a single excitation light. PLoS One. 4, e6036 (2009).
  16. Palmer, A. E., Tsien, R. Y. Measuring calcium signaling using genetically targetable fluorescent indicators. Nat. Protoc. 1, 1057-1065 (2006).
  17. Brumbaugh, J., Schleifenbaum, A., Stier, G., Sattler, M., Schultz, C. Single- and dual-parameter FRET kinase probes based on pleckstrin. Nat. Protoc. 1, 1044-1055 (2006).
  18. Aoki, K., Matsuda, M. Visualization of small GTPase activity with fluorescence resonance energy transfer-based biosensors. Nat. Protoc. 4, 1623-1631 (2009).

Play Video

Cite This Article
Sprenger, J. U., Perera, R. K., Götz, K. R., Nikolaev, V. O. FRET Microscopy for Real-time Monitoring of Signaling Events in Live Cells Using Unimolecular Biosensors. J. Vis. Exp. (66), e4081, doi:10.3791/4081 (2012).

View Video