Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Biology

天然のタンパク質からアミロイドの迅速な生成 Published: December 5, 2013 doi: 10.3791/50869

Abstract

タンパク質は、それらの特異的な三次元フォールドの誘発機能を発揮することによって生物で重要なタスクを実行する。ポリペプチドの天然の構造は、多くの目的を果たすが、それは現在ほとんどのタンパク質は、β-シートリッチアミロイドの代替的なアセンブリを採用することができることが認識される。不溶性のアミロイド線維は、最初は複数のヒトの病気と関連しているが、それらは、ますます様々な重要な細胞プロセスに関与する官能選手として表示されます。加えて、患者の組織において沈着したアミロイドは、そのような核酸およびグリコサミノグリカン(GAG)のような非タンパク質性成分を含む。これらの補因子は、不溶性沈殿物の異なるタイプの生成をもたらす、アミロイドの形成を容易にすることができる。タンパク質は、可溶性アミロイド前駆体の中間段階を介して誤って折り畳ま方法我々の理解を活用することにより、我々は、in vitroでアミロイド原繊維への天然タンパク質に変換する方法を考案した

Materials

Name Company Catalog Number Comments
2-(N-morpholino)ethanesulfonic acid (MES) Sigma-Aldrich M8250
NaCl Fisher BP358-10
1-ethyl-3-[3-dimethyl-aminopropyl] carbodiimide hydrochloride (EDC) Thermo/Pierce 22980
DNA from salmon sperm Sigma D1626
RNA from torula yeast Sigma R6625
Heparin from porcine intestinal mucosa Sigma H3149
Tris base Fisher BP152-1
Equipment:
Water bath Fisher Science Isotemp 210
Slide-A-Lyzer dialysis cassette Thermo/Pierce 66380

DOWNLOAD MATERIALS LIST

References

  1. Selkoe, D. J. Folding proteins in fatal ways. Nature. 426, 900-904 (2003).
  2. Schnabel, J. Protein folding: The dark side of proteins. Nature. 464, 828-829 (2010).
  3. Goldberg, A. L. Protein degradation and protection against misfolded or damaged proteins. Nature. 426, 895-899 (2003).
  4. Chiti, F., Dobson, C. M. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75, 333-366 (2006).
  5. Goldschmidt, L., Teng, P. K., Riek, R., Eisenberg, D. Identifying the amylome, proteins capable of forming amyloid-like fibrils. Proc. Natl. Acad. Sci. U.S.A. 107, 3487-3492 (2010).
  6. Fowler, D. M., Koulov, A. V., Balch, W. E., Kelly, J. W. Functional amyloid - from bacteria to humans. Trends Biochem. Sci. 32, 217-224 (2007).
  7. Chapman, M. R., et al. Role of Escherichia coli Curli Operons in Directing Amyloid Fiber Formation. Science. 295, 851-855 (2002).
  8. Barnhart, M. M., Chapman, M. R. Curli Biogenesis and Function. Annu. Rev. Microbiol. 60, 131-147 (2006).
  9. Claessen, D., et al. A n olved in aerial hyphae formation in Streptomyces coelicolor by forming amyloid-like fibrils. Genes Dev. 17, 1714-1726 (2003).
  10. Maji, S. K., et al. Functional Amyloids As Natural Storage of Peptide Hormones in Pituitary Secretory Granules. Science. 325, 328-332 (2009).
  11. Badtke, M. P., Hammer, N. D., Chapman, M. R. Functional Amyloids Signal Their Arrival. Sci. Signal. 2, pe43 (2009).
  12. Li, J., et al. The RIP1/RIP3 Necrosome Forms a Functional Amyloid Signaling Complex Required for Programmed Necrosis. Cell. 150, 339-350 (2012).
  13. Hou, F., et al. MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response. Cell. 146, 448-461 (2011).
  14. Stefani, M. Biochemical and biophysical features of both oligomer/fibril and cell membrane in amyloid cytotoxicity. FEBS J. 277, 4602-4613 (2010).
  15. Glabe, C. G. Structural classification of toxic amyloid oligomers. J. Biol. Chem. 283, 29639-29643 (1074).
  16. Di Domizio, J., et al. Binding with nucleic acids or glycosaminoglycans converts soluble protein oligomers to amyloid. J. Biol. Chem. 287, 736-747 (2012).
  17. Zhang, X., Li, J. -P., Lijuan, Z. Heparan sulfate proteoglycans in amyloidosis. Prog. Mol. Biol. Transl. Sci. 93, 309-334 (2010).
  18. Jiménez, J. S. Protein-DNA Interaction at the Origin of Neurological Diseases: A Hypothesis. J. Alzheimer's Dis. 22, 375-391 (2010).
  19. Bhattacharya, M., Jain, N., Mukhopadhyay, S. Insights into the Mechanism of Aggregation and Fibril Formation from Bovine Serum Albumin. J. Phys. Chem. B. 115, 4195-4205 (2011).
  20. Vetri, V., et al. Bovine Serum Albumin protofibril-like aggregates formation: Solo but not simple mechanism. Arch. Biochem. Biophysics. 508, 13-24 (2011).
  21. Bucciantini, M., et al. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature. 416, 507-511 (2002).
  22. McParland, V. J., Kalverda, A. P., Homans, S. W., Radford, S. E. Structural properties of an amyloid precursor of b2-microglobulin. Nat. Struct. Mol. Biol. 9, 326-331 (2002).
  23. Chiti, F., et al. Designing conditions for in vitro formation of amyloid protofilaments and fibrils. Proc. Natl. Acad. Sci. U.S.A. 96, 3590-3594 (1999).
  24. McParland, V. J., et al. Partially Unfolded States of b2-Microglobulin and Amyloid Formation in vitro. Biochemistry. 39, 8735-8746 (2000).
  25. Liu, K., Cho, H. S., Lashuel, H. A., Kelly, J. W., Wemmer, D. E. A glimpse of a possible amyloidogenic intermediate of transthyretin. Nat. Struct. Mol. Biol. 7, 754-757 (2000).
  26. Pfefferkorn, C. M., McGlinchey, R. P., Lee, J. C. Effects of pH on aggregation kinetics of the repeat domain of a functional amyloid. Pmel17. Proc. Natl. Acad. Sci. U.S.A. 107, 21447-21452 (2010).
  27. Di Domizio, J., et al. Nucleic acid-containing amyloid fibrils potently induce type I interferon and stimulate systemic autoimmunity. Proc. Natl. Acad. Sci. U.S.A. 109, 14550-14555 (2012).
  28. Halle, A., Hornung, V., Petzold, G. C., Stewart, C. R., Monks, B. G., Reinheckel, T., Fitzgerald, K. A., Latz, E., Moore, K. J., Golenbock, D. T. The NALP3 inflammasome is involved in the innate immune response to amyloid-β. Nat. Immunol. 9, 857 (2008).
  29. Masters, S. L., O'Neill, L. A. Disease-associated amyloid and misfolded protein aggregates activate the inflammasome. Trends Mol. Med. 17, 276-282 (2011).
天然のタンパク質からアミロイドの迅速な生成<em&gt;インビトロ</em
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Dorta-Estremera, S. M., Li, J., Cao, More

Dorta-Estremera, S. M., Li, J., Cao, W. Rapid Generation of Amyloid from Native Proteins In vitro. J. Vis. Exp. (82), e50869, doi:10.3791/50869 (2013).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter