Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Engineering

Mesure de la cohérence Decay en GaMnAs Utilisation femtoseconde mélange à quatre ondes

Published: December 3, 2013 doi: 10.3791/51094

Materials

Name Company Catalog Number Comments
Ti:Sapphire Oscillator Coherent Mira-Seed Part of full laser system
Manual Translation Stage Newport 462 Quantity: 2
Optical/Optomechanical Components Thorlabs, Others Various
DC Regulated Power Supply Tenma 72-6628
Function Generator GW Instek GFG-8216A
Digital Delay Generator Stanford Research Systems DG645
Speaker Amplifier Sony XM-222W
Silicon Photodetector Thorlabs PDA36A
Photomultiplier Tube Hamamatsu
Digital Oscilloscope Tektronix TDS2024B
Optical Cryostat Janis ST-300
Cornerstone 260 Monochromator Newport Newport 74110
Sapphire Window General Ruby and Sapphire
Citric Acid Sigma-Aldrich C1909
Optical Adhesive Norland Thorlabs NOA61
Hydrogen Peroxide Solution Sigma-Aldrich H3410
Deionized Water Water from a Type I water system

DOWNLOAD MATERIALS LIST

References

  1. Onodera, K., Masumoto, T., Kimura, M. 980 nm compact optical isolators using Cd1-x-yMnxHgyTe single crystals for high power pumping laser diodes. Electron. Lett. 30, 1954-1955 (1994).
  2. Shen, A., Ohno, Y., Segawa, Y., Ohno, H. Faraday rotation of ferromagnetic (Ga,Mn)As. Electron. Lett. 34, 190-192 (1998).
  3. Ohya, S., Shimizu, H., Higo, Y., Sun, J., Tanaka, M. Growth and Properties of Quaternary Alloy Magnetic Seminconductor (InGaMn)As. Jpn. J. Appl. Phys. Part. 2, L24-L27 (2002).
  4. Wang, J., Sun, C., Kono, J., Oiwa, A., Munekata, H., Cywiński, L., Sham, L. J. Ultrafast Quenching of Ferromagnetism in InMnAs Induced by Intense Laser Irradiation. Phys. Rev. Lett. 95, 167401-167405 (2005).
  5. Zahn, J. P., Gamouras, A., March, S., Liu, X., Furdyna, J. K., Hall, K. C. Ultrafast studies of carrier and magnetization dynamics in GaMnAs. J. Appl. Phys. 107, 033908-033917 (2010).
  6. Rozkotova, E., Nemec, P., Tesarova, N., Maly, P., Novak, V., Olejnik, K., Cukr, M., Jungwirth, T. Coherent control of magnetization precession in ferromagnetic semiconductor (Ga,Mn)As. Appl. Phys. Lett. 93, 232505-232508 (2008).
  7. Th, Magnetization manipulation in (Ga,Mn)As by subpicosecond optical excitation. Appl. Phys. Lett. 86, 152506-152509 (2005).
  8. Hall, K. C., Zahn, J. P., Gamouras, A., March, S., Robb, J. L., Liu, X., Furdyna, J. K. Ultrafast optical control of coercivity in GaMnAs. Appl. Phys. Lett. 93, 032504-032507 (2008).
  9. Reid, A. H. M., Astakhov, G. V., Kimel, A. V., Schott, G. M., Ossau, W., Brunner, K., Kirilyuk, A., Molenkamp, L. W., Th Rasing, Single picojoule pulse switching of magnetization in ferromagnetic (Ga,Mn)As. Appl. Phys. Lett. 97, 232503-232506 (2010).
  10. Rudolph, J., Hägele, D., Gibbs, H. M., Khitrova, G., Oestreich, M. Laser threshold reduction in a spintronic device. Appl. Phys. Lett. 82, 4516-4519 (2003).
  11. Roukes, M. L., Chtchelkanova, A. Y., Treger, D. M. Spintronics: A spin-based electronics vision for the future. Science. 294, 1488-1495 (2001).
  12. Awschalom, D. D., Loss, D., Samarth, N. Semiconductor Spintronics and Quantum Computation. , Springer-Verlag. Berlin. (2002).
  13. Datta, S., Das, B. Electronic analog of the electro-optic modulator. Appl. Phys. Lett. 56, 665-667 (1990).
  14. Hall, K. C., Lau, W. H., Gündoğdu, K., Flatté, M. E., Boggess, T. F. Nonmagnetic semiconductor spin transistor. Appl. Phys. Lett. 83, 2937-2939 (2003).
  15. Hall, K. C., Flatté, M. E. Performance of a spin-based insulated gate field effect transistor. Appl. Phys. Lett. 88, 162503-162505 (2006).
  16. Masek, J., Máca, D., Kudrnovsky, J., Makarovsky, O., Eaves, L., Campion, R. P., Edmonds, K. W., Rushforth, A. W., Foxon, C. T., Gallagher, B. L., Novák, V., Sinova, J., Jungwirth, T. Microscopic analysis of the valence band and impurity band theories of (Ga,Mn)As. Phys. Rev. Lett. 105, 227202-227205 (2010).
  17. Sheu, B. L., Myers, R. C., Tang, J. -M., Samarth, N., Awschalom, D. D., Schiffer, P., Flatté, M. E. Onset of ferromagnetism in low-doped Ga1-xMnxAs. Phys. Rev. Lett. 99, 227205-227208 (2007).
  18. Tang, J. -M., Flatté, M. E. Multiband tight-binding model of local magnetism in Ga1-xMnxAs. Phys. Rev. Lett. 92, 047201-047204 (2004).
  19. Jungwirth, T., Horodyská, P., Tasarová, N., Nĕmec, P., Subrt, J., Malý, P., Kuzel, P., Kadlec, C., Masek, J., Nemec, I., Orlita, M., Novák, M., Olejník, V., K, Z., Sobáň, Z., Vasek, P., Svoboda, P., Sinova, J. Systematic study of Mn-doping trends in optical properties of (Ga,Mn)As. Phys. Rev. Lett. 105, 227201 (2010).
  20. Ohya, S., Takata, K., Tanaka, M. Nearly non-magnetic valence band of the ferromagnetic seminconductor GaMnAs. Nature Phys. 7, 342-347 (2011).
  21. Burch, K. S., Shrekenhamer, D. B., Singley, E. J., Stephens, J., Sheu, B. L., Kawakami, R. K., Schiffer, P., Samarth, N., Awschalom, D. D., Basov, D. N. Impurity band conduction in a high temperature ferromagnetic semiconductor. Phys. Rev. Lett. 97, 087208-087211 (2006).
  22. Acbas, G., Kim, M. -H., Cukr, M., Novák, V., Scarpulla, M. A., Dubon, O. D., Jungwirth, T., Sinova, J., Cerne, J. Electronic structure of ferromagnetic semiconductor Ga1-xMnxAs probed by subgap magnetooptical spectroscopy. Phys. Rev. Lett. 103, 137201-137204 (2009).
  23. Berciu, M., Chakarvorty, R., Zhou, Y. Y., Alam, M. T., Traudt, K., Jakiela, R., Barcz, A., Wojtowicz, T., Liu, X., Furdyna, J. K., Dobrowolska, M. Origin of magnetic circular dichroism in GaMnAs: Giant Zeeman splitting versus spin dependent density of states. Phys. Rev. Lett. 102, 247202-247205 (2009).
  24. de Boer, T., Gamouras, A., March, S., Novák, V., Hall, K. C. Observation of a blue shift in the optical response at the fundamental band gap in Ga1-xMnxAs. Phys. Rev. B. 85, 033202-033206 (2012).
  25. Yildirim, M., March, S., Mathew, R., Gamouras, A., Liu, X., Dobrowolska, M., Furdyna, J. K., Hall, K. C. Electronic structure of Ga1-xMnxAs probed by four-wave mixing spectroscopy. Phys. Rev. B. 84, 121202(R)-121206(R) (2011).
  26. Yildirim, M., March, S., Mathew, R., Gamouras, A., Liu, X., Dobrowolska, M., Furdyna, J. K., Hall, K. C. Interband dephasing and photon echo response in GaMnAs. Appl. Phys. Lett. 101, 062403-062406 (2012).
  27. Burch, K. S., Stephens, J., Kawakami, R. K., Awschalom, D. D., Basov, D. N. Ellipsometric study of the electronic structure of Ga1-xMnxAs and low temperature GaAs. Phys. Rev. B. 70, 205208-205217 (2004).
  28. Kim, D. -S., Shah, J., Cunningham, J. E., Damen, T. C., Schäfer, W., Hartmann, M., Schmitt-Rink, S. Giant excitonic resonance in time-resoled four-wave mixing in quantum wells. Phys. Rev. Lett. 68, 1006-1009 (1992).
  29. Rappen, T., Peter, U., Wegener, M., Schäfer, W. Coherent dynamics of continuum and exciton states studied by spectrally resolved fs four-wave mixing. Phys. Rev. B. 48, 4879-4882 (1993).
  30. Cundiff, S. T., Koch, M., Knox, W. H., Shah, J., Stolz, W. Optical coherence in semiconductors: Strong emission mediated by nondegenerate interactions. Phys. Rev. Lett. 77, 1107-1110 (1996).
  31. Hall, K. C., Allan, G. R., van Driel, H. M., Krivosheeva, T., Pötz, W. Coherent response of spin-orbit split-off excitons in InP: Isolation of many-body effects through interference. Phys. Rev. B. 65, 201201(R)-201204(R) (2002).
  32. Shah, J. Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures. Cardona, M. , Springer. Berlin. (1996).
  33. Yajima, T., Taira, Y. Spatial optical parametric coupling of picoseconds light pulses and transverse relaxation effect in resonant media. J. Phys. Soc. Jpn. 47, 1620-1626 (1979).
  34. El Sayed, K., Birkedal, D., Lyssenko, V. G., Hvam, J. M. Continuum contribution to excitonic four-wave mixing due to interaction-induced nonlinearities: A numerical study. Phys. Rev. B. 55, 2456-2465 (1997).
  35. Hügel, W. A., Heinrich, M. F., Wegener, M., Vu, Q. T., Bányai, L., Haug, H. Photon echoes from semiconductor band-to-band continuum transitions in the regime of coulomb quantum kinetics. Phys. Rev. Lett. 83, 3313-3316 (1999).
  36. Reina, J. H., Quiroga, L., Johnson, N. F. Quantum entanglement and information processing via excitons in optically driven quantum dots. Phys. Rev. A. 62, 012305-012312 (2000).
  37. Troiani, F., Hohenester, U., Molinari, E. Exploiting exciton-exciton interactions in semiconductor quantum dots for quantum-information processing. Phys. Rev. B. 62, R2263-R2266 (2000).
  38. Biolatti, E., Lotti, R. C., Zanardi, P., Rossi, F. Quantum information processing with semiconductors macroatoms. Phys. Rev. Lett. 85, 5647-5650 (2000).
Mesure de la cohérence Decay en GaMnAs Utilisation femtoseconde mélange à quatre ondes
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Webber, D., de Boer, T., Yildirim,More

Webber, D., de Boer, T., Yildirim, M., March, S., Mathew, R., Gamouras, A., Liu, X., Dobrowolska, M., Furdyna, J., Hall, K. Measurement of Coherence Decay in GaMnAs Using Femtosecond Four-wave Mixing. J. Vis. Exp. (82), e51094, doi:10.3791/51094 (2013).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter