Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Chemistry

Синтез индоксил-гликозидов для обнаружения гликозидазой деятельности

Published: May 27, 2015 doi: 10.3791/52442

Introduction

В течение долгого времени производство индиго был экономически очень важный процесс. Перед крупномасштабных химических синтезов дал дешевый доступ к индиго, предшественники были получены из природных источников с дохристианских времен. Выращивание индиго обеспечения растений (естественно индиго) в Европе стал неблагодарным в 17-м веке, как количество индиго предшественники индийской индиго (0,2-0,8%) составляет около 30 раз выше. В конце 19-го века химического синтеза индиго подавил обычный выращивание 1,2.

Indigo предшественники, происходящие в растениях включают индикана (1), Insatan A (2) и Isatan B (3) (рис 1). Все они состоят из индоксил мотива, связанного с гликозильного остатка. Расщепление гликозидной связи, например, с помощью ферментативного гидролиза, приводит к выделению индоксил (4). Сама индоксил практически бесцветны, но могут быть быстро окисляется с образованием индиго Краситель (5). Это чувствительная реакция была адаптирована в биохимии, бактериологии, гистохимии и молекулярной биологии для мониторинга активности ферментов. Скрининг активности в естественных условиях без выделения или очистки ферментов, а также экспресс-тесты на чашках с агаром или в растворе (например, бело-голубым скрининга, микро-скважин) возможно. В зависимости от остатка (например, сложные эфиры, гликозиды, сульфаты), связанного с индоксил фрагмента, пригодными субстратами в различных классов ферментов (например, эстераз, глюкозидазы, сульфатазы) были разработаны 3. В следующем внимание будет уделено формированию и применению индоксил гликозидов.

Фигура 1
Рисунок 1: Природные предшественники индиго и формирование красителя индиго путем гидролиза.цель = "_ пустое"> Пожалуйста, нажмите здесь, чтобы посмотреть большую версию этой фигуры.

Замещение картина индоксил фрагмента определяет цвет и физические свойства полученного красителя индиго. Наиболее распространенные шаблоны замещения 5-бром-4-хлор (сокращенно от X; зеленовато-голубой), 5-бром (синий) и 5-бром-6-хлор (пурпурный), так как они образуют мельчайшие частицы красителя, делают не образуют гранулы и имеют наименьший диффузию из участков гидролиза. Последнее свойство особенно важно для естественных условиях экспериментов в 3.

Первый доклад о indigogenic метода для обнаружения эстеразы был опубликован в 1951 году и Barrnett Селигман, который занятого индоксил ацетат и бутират 4. О десятилетие спустя indigogenic принцип был адаптирован для локализации глюкозидазы млекопитающих 5. До сих пор несколько индоксил гликозидов были разработаны, хотя их синтез оказался трудно. Большинство синтезов на основе использования в -acetylated индоксил N в качестве акцептора и соответствующих гликозилгалогенидом донора 6-14. Гликозилирование проводят в ацетоне с помощью гидроксида натрия. В этих условиях количество побочных реакций происходит, значительно уменьшая выход. Специально для глюкозы структур типа очень низкие выходы гликозилирования сообщалось (например, 15% (N-ацетил-5-бром-4-хлор-индол-3-ил) -2,3,4,6-тетра-О-ацетил -β-ᴅ-глюкопиранозид 6 и 26% (N-ацетил-5-бром-4-хлор-индол-3-ил) -2,3,2 ', 3', 4'-пента вывода -acetyl- β-ᴅ-xylobioside 14 в более недавний пример). Через новый подход, используя сложные эфиры indoxylic кислоты, значительное количество индоксил гликозидов были получены с хорошим выходом (например, (N-ацетил-5-бром-4-хлор-индол-3-ил) -2,3,4, 6-тетра-О-ацетил-β-ᴅ-глюкопиранозид выход 57%).

_content "> Следующий протокол описывает простой синтез indoxylic кислоты аллилового эфира (5-бром-4-хлор) и на их основе синтеза с индоксил гликозида (X-Gal). Простой модельный эксперимент показывает ферментную реактивность β- галактозидазы с использованием X-Gal.

Subscription Required. Please recommend JoVE to your librarian.

Materials

Name Company Catalog Number Comments
Acetic anhydride Grüssing 10298 Corrosive, flammable
Acetonitrile Sigma-Aldrich 608-001-00-3 Harmful, flammable
Allyl alcohol Aldrich 453021 Harmful, dangerous for the environment
Amberlite IR-120 H+ Fluka 06428 Irritant
Bromoacetic acid Merck 802260 Corrosive, toxic, dangerous for the environment
4-Bromo-3-chloro-2-methylaniline ABCR AB 171687 Irritant
Dichloromethane ACROS 326850010 Harmful
Diethyl ether Grüssing 10274 Harmful, extremly flammable
Dimethylformamide ACROS 348430010 Harmful, flammable
Dimethylsulfoxide Sigma-Aldrich 41648
Ethyl acetate Sigma-Aldrich 607-022-00-5 Irritant, flammable
Ethylenediaminetetraacetic acid AppliChem A1103.0500 Irritant
β1,3-Galactosidase, recombinant, E. coli Calbiochem 345795
Hydrochloric acid VWR 20252.290 Corrosive
Magnesium sulfate hydrate Merck 105885
Methanol ACROS 326950010 Toxic, flammable
Morpholine Janssen Chimica 15.868.57 Corrosive, flammable
Peroleum ether Azelis 111053 Flammable, irritant, dangerous for the environment
Potassium carbonate Grüssing 12005 Corrosive
Potassium permanganate Grüssing 12056 Harmful, oxidising
Potassium tert-butoxide Merck 804918 Corrosive, flammable
Pyridine Sigma-Aldrich 613-002-00-7 Harmful, flammable
Silver acetate Fluka 85140 Irritant, dangerous for the environment
Sodium bicarbonate Grüssing 12144 Corrosive
Sodium hydride Merck 814552 Corrosive, flammable
Sodium hydroxide Riedel-de Häen S181200 Corrosive
Sodium methanolate Merck 806538 Corrosive, flammable
Sodium sulfate Grüssing 12175
Tetrabutylammonium hydrogensulfate Lancaster 5438 Harmful
Tetrahydrofurane Sigma-Aldrich 87371 Harmful, flammable
Tetrakis (triphenylphosphine)palladium(0) Sigma-Aldrich 216666
Triphosgene Fluka 15217 Toxic
Tris (hydroxymethyl)aminomethane hydrochloride Sigma T-3253 Irritant

DOWNLOAD MATERIALS LIST

References

  1. Clark, R. J. H., Cooksey, C. J., Daniels, M. A. M., Withnall, R. Indigo, Woad, and Tyrian Purple: Important Vat Dyes from Antique to the Present. Endeavour. 17, 191-199 (1993).
  2. Hunger, K. Industrial Dyes: Chemistry, Properties, Applications. , 1st, Weinheim. Wiley-VHC. (2003).
  3. Kiernan, J. A. Indigogenic Substrates for Detection and Localization of Enzymes. Biotechn. Histochem. 82, 73-103 (2007).
  4. Barnett, R. J., Seligman, A. M. Histochemical Demonstration of Esterases by Production of Indigo. Science. 114, 579-582 (1951).
  5. Pearson, B., Andrews, M., Grose, F. Histochemical Demonstration of Mammalian Glucosidase by Means of 3-(5-Bromoindolyl)-β-ᴅ-glucopyranoside. Exp. Biol. Med. 108, 619-623 (1961).
  6. Anderson, F. B., Leaback, D. H. Substrates for the Histochemical Localization of some Glycosidases. Tetrahedron. 12, 236-239 (1961).
  7. Van Dort, M. E., Lee, K. C., Hamilton, C. A., Rehemtulla, A., Ross, B. R. Radiosynthesis and Evaluation of 5-[125I]Iodoindolyl-3-yl-β-ᴅ-galactopyranoside ([125I]IBDG) as a β-Galactosidase Imaging Radioligand. Mol. Imaging. 7, 187-197 (2008).
  8. Yoshida, K., Iino, N., Koga, I. Syntheses of Halogen Substituted β-ᴅ-Glucuronides and Their Hydrolysis by Rabbit Liver β-Glucoronidase. Chem. Pharm. Bull. 32, 1759-1769 (1975).
  9. Horwitz, J. P., et al. Substrates for Cytochemical Demonstartion of Enzyme Activity I. Some Substituted 3-Indolyl-β-ᴅ-glycopyranosides. J. Med. Chem. 7, 574-575 (1964).
  10. Eschenfelder, V., Brossmer, R. 5-Bromo-indol-3-yl 5-Acetamido-3,5-dideoxy-α-ᴅ-glycero-ᴅ-galactononulopyranosidic Acid, a Novel Chromogenic Substrate for the Staining of Sialidase Activity. Glycoconjugate J. 4, 171-178 (1987).
  11. Fujii, I., Iwabuchi, Y., Teshima, T., Shiba, T., Kikuchi, M. X-Neu5Ac: A Novel Substrate for Chromogenic Assay of Neuraminidase Activity in Bacterial Expression Systems. Bioorg. Med. Chem. 1, 147-149 (1993).
  12. Berlin, W., Sauer, B. In situ Color Detection of α-ʟ-Arabinofuranisodase, a "No-Background" Reporter Gene, with 5-Bromo-3-indolyl-α-ʟ-arabinofuranoside. Anal. Biochem. 243, 171-175 (1996).
  13. Marmuse, L., et al. New Chromogenic Substrates for Feruloyl Esterases. Org. Biomol. Chem. 6, 1208-1214 (2008).
  14. Kaneko, S., Kiaoka, M., Kuno, A., Hayashi, K. Syntheses of 4-Methylumbelliferyl-β-ᴅ-Xylobioside and 5-Bromo-3-Indolyl-β-ᴅ-Xylobioside for Sensitive Detection of Xylanase Activity on Agar Plates. Biosci. Biotechnol. Biochem. 64, 741-745 (2000).
  15. Robertson, A. J. Syntheses of Glucosides. Part I. The Synthesis of Indican. Chem. Soc. , 1937-1943 (1927).
  16. Robertson, A., Waters, R. B. J. Synthese of Glucosides. Part VII. The Synthesis of 6-Bromoindican. Chem. Soc. , 2239-2243 (1929).
  17. Böttcher, S., Thiem, J. Indoxylic Acid Esters as Convenient Intermediates Towards Indoxyl Glycosides. Eur. J. Org. Chem. , 564-574 (2014).
  18. Böttcher, S., Hederos, M., Champion, E., Dékány, G., Thiem, J. Novel Efficient Routes to Indoxyl Glycosides for Monitoring Glycosidase Activities. Org. Lett. 15, 3766-3769 (2013).
  19. Böttcher, S., Thiem, J. Facile Preparation of Indoxyl- and Nitrophenyl Glycosides of Lactosamine and Isolactosamine. RSC Adv. 4, 10856-10861 (2014).
Синтез индоксил-гликозидов для обнаружения гликозидазой деятельности
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Böttcher, S., Thiem, J.More

Böttcher, S., Thiem, J. Synthesis of Indoxyl-glycosides for Detection of Glycosidase Activities. J. Vis. Exp. (99), e52442, doi:10.3791/52442 (2015).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter