Summary

从口面皮肤牵拉刺激体感事件相关电位

Published: December 18, 2015
doi:

Summary

This paper introduces a method for obtaining somatosensory event-related potentials following orofacial skin stretch stimulation. The current method can be used to evaluate the contribution of somatosensory afferents to both speech production and speech perception.

Abstract

Cortical processing associated with orofacial somatosensory function in speech has received limited experimental attention due to the difficulty of providing precise and controlled stimulation. This article introduces a technique for recording somatosensory event-related potentials (ERP) that uses a novel mechanical stimulation method involving skin deformation using a robotic device. Controlled deformation of the facial skin is used to modulate kinesthetic inputs through excitation of cutaneous mechanoreceptors. By combining somatosensory stimulation with electroencephalographic recording, somatosensory evoked responses can be successfully measured at the level of the cortex. Somatosensory stimulation can be combined with the stimulation of other sensory modalities to assess multisensory interactions. For speech, orofacial stimulation is combined with speech sound stimulation to assess the contribution of multi-sensory processing including the effects of timing differences. The ability to precisely control orofacial somatosensory stimulation during speech perception and speech production with ERP recording is an important tool that provides new insight into the neural organization and neural representations for speech.

Introduction

言语生产是依赖于听觉和体感的信息。听觉和体感反馈的组合出现由婴儿产生的最早发声并且都参与了言语运动学习。最近的研究结果表明,体感过程有助于感知以及生产。例如,语音识别,当机器人装置拉伸面部皮肤作为参与者听听觉刺激1声音被改变。空气喷到与听觉言语刺激相一致的脸颊改变参与者的感性判断2。

这些体感效果涉及响应于皮肤变形皮肤机械性的激活。运动期间,皮肤变形以各种方式,和皮肤机械性是已知的促进肌肉感觉3,4。皮肤机械感受器的动觉作用是妖由最近的调查结果5-7,该运动相关的皮肤的菌株被适当地视为屈曲或伸展运动取决于皮肤伸展6的图 ​​案strated。在言语动作训练,这是伴面部皮肤弹力语音特定语音的重复过程中,关节模式的改变以自适应方式7。这些研究表明,行动期间调节皮肤伸展提供了评价皮肤传入到感觉系统的动觉功能的贡献的方法。

对颜面部皮肤机械性的运动知觉功能使用心理生理的方法7,8和微电极由感觉神经9,10重新编写了研究居多。这里,当前协议着重于与面部皮肤变形和事件相关电位(ERP)的记录相关联的口面体感刺激的结合。钍是程序有精确的实验控制面部皮肤变形的使用计算机控制的机器人装置的方向和定时。这使我们可以由双方讲话运动学习期间在广泛取向选择性和精确地变形的面部皮肤测试即将语音产生和感知躯体感觉贡献特定假说,并直接在语音生成和感知。 ERP系统记录用于无创地感评价刺激对口颌面行为的影响的时间模式和定时。目前的协议,然后可以评估动觉功能的神经关联和评估体感系统这两个语音处理,言语产生和言语感知的贡献。

要显示的皮肤伸展刺激的ERP记录应用程序的用途,下列方案着重于躯体感觉和听觉输入的语音P上的相互作用erception。结果突出显示,以评估语音体感听觉相互作用提供了新思路。

Protocol

目前的实验方案如下根据耶鲁大学人权调查委员会的道德行为准则。 1. Electroenchephalopgaphy(EEG)的制备测量头的大小来确定合适的EEG帽。 通过找到鼻根和INION之间的中点用卷尺识别顶点的位置。 使用预先确定的顶点例如CZ放置在头上的EEG帽。用卷尺为已完成1.2放置盖后再次检查锆石。注意,EEG帽配有电极持有者和安置的64个电极(或持有者)是基于改性:10-20系统预先指…

Representative Results

本节介绍针对体感刺激的面部皮肤变形产生的代表性事件相关电位。实验装置示于图1。正弦刺激施加到面部皮肤横向于口服角度(参见图3A作为参考)。录每个参与者与12名参加者在总测试一百拉伸试验。除去脱机上的水平和垂直眼电图信号的基础上加上闪烁和眼球运动伪影的试验后(超过±150μV),试验超过85%的平均?…

Discussion

这里报道的研究提供的证据表明是受面部皮肤变形所产生精确控制的体感刺激诱导皮层的ERP。皮肤传入是被称为动觉信息3,4人体肢体运动5,6和言语运动7,8,21的丰富来源。拉伸面部皮肤中反映讲话时的实际运动方向的方式诱导肌肉感觉类似于相应的动作。目前相结合的方法精确控制皮肤的拉伸和ERP录音可以用于在广泛讲话的行为进行调查颜面部功能的神经基础。

<p class="j…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作是由国立耳聋与其他交流障碍补助R21DC013915和R01DC012502,在加拿大自然科学和工程研究理事会和欧盟第七框架计划(FP7 / 2007-2013赠款协议没有根据欧洲研究理事会的支持。339152 )。

Materials

EEG recording system Biosemi ActiveTwo
Robotic decice for skin stretch Geomagic Phantom Premium 1.0
EEG-compatible earphones Etymotic research ER3A
Software for visual and auditory stimulation Neurobehavioral Systems Presentation
Electrode gel Parker Laboratories, INC Signa gel
Double sided tape 3M 1522
Disposable syringe Monoject 412 Curved Tip
Analog input device National Instuments  PCI-6036E
Degital output device Measurement computing USB-1208FS

References

  1. Ito, T., Tiede, M., Ostry, D. J. Somatosensory function in speech perception. Proc Natl Acad Sci U S A. 106, 1245-1248 (2009).
  2. Gick, B., Derrick, D. Aero-tactile integration in speech perception. Nature. 462, 502-504 (2009).
  3. McCloskey, D. I. Kinesthetic sensibility. Physiol Rev. 58, 763-820 (1978).
  4. Proske, U., Gandevia, S. C. The kinaesthetic senses. J Physiol. 587, 4139-4146 (2009).
  5. Collins, D. F., Prochazka, A. Movement illusions evoked by ensemble cutaneous input from the dorsum of the human hand. J Physiol. 496 (Pt 3), 857-871 (1996).
  6. Edin, B. B., Johansson, N. Skin strain patterns provide kinaesthetic information to the human central nervous system. J Physiol. 487 (Pt 1), 243-251 (1995).
  7. Ito, T., Ostry, D. J. Somatosensory contribution to motor learning due to facial skin deformation. J Neurophysiol. 104, 1230-1238 (2010).
  8. Connor, N. P., Abbs, J. H. Movement-related skin strain associated with goal-oriented lip actions. Exp Brain Res. 123, 235-241 (1998).
  9. Johansson, R. S., Trulsson, M., Olsson, K. &. #. 1. 9. 4. ;., Abbs, J. H. Mechanoreceptive afferent activity in the infraorbital nerve in man during speech and chewing movements. Exp Brain Res. 72, 209-214 (1988).
  10. Nordin, M., Hagbarth, K. E. Mechanoreceptive units in the human infra-orbital nerve. Acta Physiol Scand. 135, 149-161 (1989).
  11. . Guideline thirteen: guidelines for standard electrode position nomenclature. American Electroencephalographic Society. Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society. 11, 111-113 (1994).
  12. Ito, T., Gracco, V. L., Ostry, D. J. Temporal factors affecting somatosensory-auditory interactions in speech processing. Frontiers in psychology. 5, 1198 (2014).
  13. Ito, T., Johns, A. R., Ostry, D. J. Left lateralized enhancement of orofacial somatosensory processing due to speech sounds. J Speech Lang Hear Res. 56, S1875-S1881 (2013).
  14. Ito, T., Ostry, D. J. Speech sounds alter facial skin sensation. J Neurophysiol. 107, 442-447 (2012).
  15. Kenton, B., et al. Peripheral fiber correlates to noxious thermal stimulation in humans. Neuroscience letters. 17, 301-306 (1980).
  16. Larson, C. R., Folkins, J. W., McClean, M. D., Muller, E. M. Sensitivity of the human perioral reflex to parameters of mechanical stretch. Brain Res. 146, 159-164 (1978).
  17. Möttönen, R., Järveläinen, J., Sams, M., Hari, R. Viewing speech modulates activity in the left SI mouth cortex. Neuroimage. 24, 731-737 (2005).
  18. Soustiel, J. F., Feinsod, M., Hafner, H. Short latency trigeminal evoked potentials: normative data and clinical correlations. Electroencephalogr Clin Neurophysiol. 80, 119-125 (1991).
  19. Martin, B. A., Tremblay, K. L., Korczak, P. Speech evoked potentials: from the laboratory to the clinic. Ear and hearing. 29, 285-313 (2008).
  20. Perrin, F., Bertrand, O., Pernier, J. Scalp current density mapping: value and estimation from potential data. IEEE Trans Biomed Eng. 34, 283-288 (1987).
  21. Ito, T., Gomi, H. Cutaneous mechanoreceptors contribute to the generation of a cortical reflex in speech. Neuroreport. 18, 907-910 (2007).
  22. Onton, J., Westerfield, M., Townsend, J., Makeig, S. Imaging human EEG dynamics using independent component analysis. Neurosci Biobehav Rev. 30, 808-822 (2006).
  23. Larsson, L. E., Prevec, T. S. Somato-sensory response to mechanical stimulation as recorded in the human EEG. Electroencephalogr Clin Neurophysiol. 28, 162-172 (1970).
  24. Johansson, R. S., Trulsson, M., Olsson, K. &. #. 1. 9. 4. ;., Westberg, K. G. Mechanoreceptor activity from the human face and oral mucosa. Exp Brain Res. 72, 204-208 (1988).
  25. Diehl, R. L., Lotto, A. J., Holt, L. L. Speech perception. Annu Rev Psychol. 55, 149-179 (2004).
  26. Liberman, A. M., Mattingly, I. G. The motor theory of speech perception revised. Cognition. 21, 1-36 (1985).
  27. Schwartz, J. L., Basirat, A., Menard, L., Sato, M. The Perception-for-Action-Control Theory (PACT): A perceptuo-motor theory of speech perception. J Neurolinguist. 25, 336-354 (2012).
  28. Rizzolatti, G., Craighero, L. The mirror-neuron system. Annu Rev Neurosci. 27, 169-192 (2004).
  29. Rizzolatti, G., Fabbri-Destro, M. The mirror system and its role in social cognition. Curr Opin Neurobiol. 18, 179-184 (2008).
  30. D’Ausilio, A., et al. The motor somatotopy of speech perception. Curr Biol. 19, 381-385 (2009).
  31. Fadiga, L., Craighero, L., Buccino, G., Rizzolatti, G. Speech listening specifically modulates the excitability of tongue muscles: a TMS study. Eur J Neurosci. 15, 399-402 (2002).
  32. Meister, I. G., Wilson, S. M., Deblieck, C., Wu, A. D., Iacoboni, M. The essential role of premotor cortex in speech perception. Curr Biol. 17, 1692-1696 (2007).
  33. Möttönen, R., Watkins, K. E. Motor representations of articulators contribute to categorical perception of speech sounds. J Neurosci. 29, 9819-9825 (2009).
  34. Watkins, K. E., Strafella, A. P., Paus, T. Seeing and hearing speech excites the motor system involved in speech production. Neuropsychologia. 41, 989-994 (2003).
  35. Wilson, S. M., Saygin, A. P., Sereno, M. I., Iacoboni, M. Listening to speech activates motor areas involved in speech production. Nat Neurosci. 7, 701-702 (2004).

Play Video

Cite This Article
Ito, T., Ostry, D. J., Gracco, V. L. Somatosensory Event-related Potentials from Orofacial Skin Stretch Stimulation. J. Vis. Exp. (106), e53621, doi:10.3791/53621 (2015).

View Video