Summary

Fabricação de dispositivos microfluídicos tridimensional baseados em papel para imunoensaios

Published: March 09, 2017
doi:

Summary

Nós pormenor um método para fabricar dispositivos microfluidicos tridimensionais à base de papel para uso no desenvolvimento de imunoensaios. A nossa abordagem para o dispositivo de montagem é um tipo de camadas múltiplas, de fabrico aditivo. Nós demonstramos um imunoensaio sanduíche para fornecer resultados representativos para esses tipos de dispositivos baseados em papel.

Abstract

Papel absorve fluidos autonomamente devido à ação capilar. Por padronização papel com barreiras hidrofóbicos, o transporte de fluidos pode ser controlada e orientada dentro de uma camada de papel. Além disso, empilhando camadas múltiplas de papel decorado cria sofisticadas redes microfluídicos tridimensionais que podem apoiar o desenvolvimento de ensaios analíticos e bioanalíticos. microcanais à base de papel são barato, portátil, fácil de usar, e não requerem equipamento externo para operar. Como resultado, eles são uma grande promessa como uma plataforma para diagnóstico point-of-care. A fim de avaliar adequadamente a utilidade e o desempenho analítico de dispositivos baseados em papel, devem ser desenvolvidos métodos adequados para assegurar o seu fabrico é reprodutível e a uma escala que é apropriado para ambientes de laboratório. Neste texto, um método para fabricar uma arquitectura geral do dispositivo que pode ser utilizado para os imunoensaios à base de papel é descrito. Nós usamos uma forma de manufacturin aditivog (laminação multi-layer) para preparar dispositivos que integram múltiplas camadas de papel decorado e adesivo padronizado. Além de demonstrar o uso correto desses dispositivos microfluídicos tridimensionais baseados em papel com um imunoensaio para gonadotrofina coriônica humana (hCG), erros no processo de fabricação que podem resultar em falhas do dispositivo são discutidas. Esperamos que esta abordagem para a fabricação de dispositivos baseados em papel vai encontrar ampla utilidade no desenvolvimento de aplicações analíticas projetadas especificamente para as configurações de recursos limitados.

Introduction

O papel é amplamente disponível numa gama de graus ou formulações, pode ser funcionalizado de modo a ajustar as suas propriedades, e podem transportar fluidos de forma autónoma, por acção capilar ou de drenagem. Se o papel é modelado com uma substância hidrofóbica (por exemplo, uma foto-resistente ou cera 2), o que a absorção de fluidos pode ser controlada espacialmente dentro de uma camada de papel. Por exemplo, uma amostra aquosa pode ser aplicada dirigida para um certo número de zonas diferentes para reagir com reagentes químicos e bioquímicos armazenados dentro do papel. Estes dispositivos de microfluidos à base de papel tem sido demonstrado ser uma plataforma útil para o desenvolvimento de ensaios analíticos portáteis e barato 3, 4, 5, 6, 7. Aplicações de dispositivos microfluídicos em papel incluem diagnósticos point-of-careef "> 8, a monitorização dos contaminantes ambientais 9, a detecção de produtos farmacêuticos falsificados 10, e cuidados de saúde deslocalizado (ou" telemedicina ") em recursos limitados definições 11.

Múltiplas camadas de papel modelado podem ser montadas em um dispositivo integrado onde as zonas hidrofílicas de camadas vizinhos (ou seja, acima ou abaixo) se unem para formar redes fluídicos contínuas cujas entradas e saídas podem ser acoplados ou para a esquerda independente. 12 Cada camada pode compreender um padrão único, o que permite a separação espacial dos reagentes e ensaios múltiplos a serem realizadas num único dispositivo. O dispositivo de microfluidos resultante tridimensional é não só capaz de fluidos de drenagem para permitir que os ensaios analíticos (por exemplo, a função hepática testa 13 e detecção electroquímica de pequenas moléculas de 14), mas pode também supporta de uma série de funções sofisticadas (por exemplo, as válvulas 15 e simples máquinas 16) comuns às abordagens microfluídicos tradicionais. Importante, porque o papel absorve fluidos por acção capilar, estes dispositivos podem ser operados com um mínimo esforço por parte do utilizador.

Uma vez que os reagentes podem ser armazenados no interior da arquitectura tridimensional de um dispositivo à base de papel, protocolos complexos pode ser reduzida a uma única adição da amostra aquosa de um dispositivo. Recentemente, foi introduzido um dispositivo de arquitectura tridimensional geral que pode ser utilizado para o desenvolvimento de imunoensaios à base de papel utilizando a técnica de cera-impressão para criar camadas padronizadas. 17, 18 Estes estudos concentraram-se sobre a forma como os aspectos relacionados com a concepção do dispositivo de número de camadas empilhadas utilizado, a composição das camadas, e o padrão da rede controlado-a por global de microfluidos tridimensionaldesempenho do imunoensaio. Em última análise, nós fomos capazes de usar essas regras de design para facilitar o rápido desenvolvimento de um imunoensaio multiplexado 19. Neste manuscrito, um imunoensaio previamente desenvolvido para gonadotrofina coriônica humana (hCG; hormônio da gravidez) 17 é usado como um exemplo para ilustrar as estratégias que desenvolvemos para a montagem e fabrico de imunoensaios baseados em papel tridimensionais. Assim, vamos nos concentrar na montagem e operação de um dispositivo em vez do desenvolvimento de um ensaio.

Em um imunoensaio sanduíche, que é o formato utilizado para detectar hCG, um anticorpo de captura específico para uma subunidade da hormona é revestida sobre um substrato sólido, o qual é então bloqueado para limitar a adsorção não específica de uma amostra ou qualquer reagente subsequente. Este substrato é na maioria das vezes uma placa de micropoços de poliestireno (por exemplo, por um ensaio de imunossorvente ligado a enzima ou ELISA). A amostra é entãoadicionada a um poço e deixadas a incubar durante um período de tempo. Após lavagem rigorosa, é adicionado um anticorpo específico para a outra subunidade da hCG e deixado a incubar. Este anticorpo de detecção pode ser conjugado com uma partícula coloidal, enzima, fluoróforo ou a fim de produzir um sinal mensurável. O poço é novamente lavadas antes da interpretação dos resultados de um ensaio (por exemplo, utilizando um leitor de placas). Enquanto kits comerciais contam com este processo de vários passos que consomem tempo, todos estes passos podem ser executados rapidamente em microcanais à base de papel com um mínimo de intervenção para o utilizador.

O dispositivo utilizado para o imunoensaio hCG é composto por seis camadas activas, que são, de cima para baixo, utilizadas para a adição da amostra, armazenamento conjugado, incubação, captura, lavagem e blot (Figura 1). A camada de adição da amostra é feita de papel de filtro qualitativo. Isso facilita a introdução de uma amostra líquida e protege os reagentes na Laye conjugador de contaminação do ambiente ou de contacto acidental por parte do utilizador. A camada de conjugado (papel de filtro qualitativo) mantém o reagente produtor de cor (por exemplo, anticorpo, marcado com ouro coloidal) para o imunoensaio. A camada de incubação (papel de filtro qualitativo) permite que a amostra de viajar lateralmente dentro do plano do papel para promover a ligação do analito com reagentes antes de atingir a camada seguinte, a camada de captura. A camada de captura (membrana de nylon) contém ligandos específicos para o analito adsorvido ao material. Depois o ensaio é terminado, esta camada é revelada a permitir a visualização do imunocomplexo concluída. A camada de lavagem (papel filtro qualitativo) chama o excesso de líquidos, incluindo reagentes conjugados livres de distância da face da camada de captura para a camada de blot (papel de cromatografia de espessura). O dispositivo de seis camadas é realizada em conjunto por cinco camadas de adesivo padronizado, de dupla face: quatro camadas de adesivo permanente manter a integridade da assemdispositivo sangrados e uma camada de adesivo removível facilita a descamação do dispositivo para inspeccionar os resultados do imunoensaio na camada de captura.

Para o propósito deste manuscrito, que utilizam apenas as amostras de controlo positivas e negativas de hCG (0 mIU / ml e 81 mIU / mL, respectivamente) para se obter resultados representativos de um ensaio imunológico baseado em papel, o que permite uma discussão dedicado da relação entre métodos de fabricação e o desempenho de um dispositivo. Além de demonstrar como fabricar dispositivos com sucesso, destacam-se vários erros de fabricação que poderiam levar à falha de um dispositivo ou os resultados do ensaio irreproduzíveis. O protocolo e discussão detalhada neste manuscrito irá fornecer pesquisadores com informações valiosas sobre como imunoensaios baseados em papel são projetados e fabricados. Enquanto focamos a nossa demonstração sobre imunoensaios, antecipamos que as diretrizes aqui apresentadas serão de grande utilidade para a fabricação de Tridimensional de papel baseado em dispositivos microfluídicos.

Protocol

1. Preparação de camadas Dispositivo de microfluidos baseados em papel Prepare padrões para camadas de papel, nylon, e adesivo usando um programa de software de design gráfico. 6 Cada camada pode ter um padrão diferente. NOTA: O padrão pode incluir furos de alinhamento que não são necessários para um imunoensaio baseado em papel funcional, mas auxiliar com o fabrico de dispositivos reprodutível tridimensionais. Colocação destes furos vai diferir se os dispositivos s?…

Representative Results

A obtenção de desempenhos de ensaio reprodutíveis em microcanais tridimensionais à base de papel baseia-se num método de fabricação que garante a consistência entre os dispositivos. Para atingir este objetivo, nós identificamos um número de processos de fabricação e considerações materiais, e discuti-los aqui no contexto de demonstrar um imunoensaio baseado em papel. Usamos um método de impressão de cera de modo a formar barreiras hidrófobos dentro de dispositivos de mic…

Discussion

Identificação de uma estratégia de produção reproduzível é uma componente essencial do desenvolvimento do ensaio. 22 Usamos uma camada por camada de abordagem sequencial, para a fabricação de dispositivos microfluídicos tridimensionais baseados em papel. Em contraste com os métodos que se aplicam de dobragem ou origami técnicas para produzir dispositivos de multicamadas a partir de uma única folha de papel 23, 24 de fabrico a…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was supported by Tufts University and by a generous gift from Dr. James Kanagy. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. (DGE-1325256) that was awarded to S.C.F. D.J.W. was supported by a U.S. Department of Education GAANN fellowship. We thank Dr. Jeremy Schonhorn (JanaCare), Dr. Jason Rolland (Carbon3D), and Rachel Deraney (Brown University) for helping develop the design of the three-dimensional paper-based microfluidic device and immunoassay.

Materials

Illustrator CC Adobe to design patterns for layers of paper and adhesive
Xerox ColorQube 8580 printer Amazon B00R92C9DI to print wax patterns onto layers of paper and Nylon
Isotemp General Purpose Heating and Drying Oven Fisher Scientific 15-103-0509 to melt wax into paper
Artograph LightTracer Amazon B000KNHRH6 to assist with alignment of layers
Apache AL13P laminator Amazon B00AXHSZU2 to laminate layers together
Graphtec CE6000 Cutting Plotter Graphtec America CE6000-40 to pattern adhesive films
Swingline paper cutter Amazon B0006VNY4C to cut paper or devices
Epson Perfection V500 photo scanner Amazon B000VG4AY0 to scan images of readout layer
economy plier-action hole punch McMaster-Carr 3488A9 to remove alignment holes 
Whatman chromatogrpahy paper, Grade 4 Sigma Aldrich WHA1004917
Fisherbrand chromatography paper (thick)  Fisher Scientific 05-714-4 to function as blot layer
Immunodyne ABC (0.45 µm pore size ) Pall Corporation NBCHI3R to function as material for capture layer
removable/permanent adhesive-double faced liner FLEXcon DF021621 to facilitate peeling
permanent adhesive-double faced liner FLEXcon DF051521
wax liner FLEXcon FLEXMARK 80 D/F PFW LINER to assist with patterning adhesive
acrylic sheet McMaster-Carr 8560K266  to fabricate frame
self-adhesive sheets Fellowes CRC52215 to use as protective slip
absolute ethanol VWR 89125-172 to sanitize work area
bovine serum albumin AMRESCO 0332
Sekisui Diagnostics OSOM hCG Urine Controls Fisher Scientific 22-071-066 to use as positive and negative samples
anti-β-hCG monoclonal antibody colloidal gold conjugate (clone 1) Arista Biologicals  CGBCG-0701 to treat conjugate layer
goat anti-α-hCG antibody Arista Biologicals  ABACG-0500 to treat capture layer
10X phosphate buffered saline Fisher Scientific BP3991
Oxoid skim milk powder Thermo Scientific OXLP0031B
Tween 20 AMRESCO M147

References

  1. Martinez, A. W., Phillips, S. T., Wiley, B. J., Gupta, M., Whitesides, G. M. FLASH: A rapid method for prototyping paper-based microfluidic devices. Lab Chip. 8 (12), 2146-2150 (2008).
  2. Carrilho, E., Martinez, A. W., Whitesides, G. M. Understanding wax printing: a simple micropatterning process for paper-based microfluidic devices. Anal. Chem. 81 (16), 7091-7095 (2009).
  3. Martinez, A. W., Phillips, S. T., Butte, M. J., Whitesides, G. M. Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew. Chem. Int. Ed. 46 (8), 1318-1320 (2007).
  4. Martinez, A. W., Phillips, S. T., Whitesides, G. M. Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal. Chem. 82 (1), 2-10 (2010).
  5. Cate, D. M., Adkins, J. A., Mettakoonpitak, J., Henry, C. S. Recent developments in paper-based microfluidic devices. Anal. Chem. 87 (1), 19-41 (2015).
  6. Li, X., Ballerini, D. R., Shen, W. A perspective on paper-based microfluidics: Current status and future trends. Biomicrofluidics. 6, 011301 (2012).
  7. Lisowski, P., Zarzycki, P. K. Microfluidic paper-based analytical devices (µPADs) and micro total analysis systems (µTAS): Development, applications and future trends. Chromatographia. 76, 1201-1214 (2013).
  8. Pollock, N. R., et al. A paper-based multiplexed transaminase test for low-cost, point-of-care liver function testing. Sci. Transl. Med. 4 (152), 152ra129 (2012).
  9. Mentele, M. M., Cunningham, J., Koehler, K., Volckens, J., Henry, C. S. Microfluidic paper-based analytical device for particulate metals. Anal. Chem. 84 (10), 4474-4480 (2012).
  10. Weaver, A. A., et al. Paper analytical devices for fast field screening of beta lactam antibiotics and antituberculosis pharmaceuticals. Anal. Chem. 85 (13), 6453-6460 (2013).
  11. Martinez, A. W., Phillips, S. T., Carrilho, E., Thomas, S. W., Sindi, H., Whitesides, G. M. Simple telemedicine for developing regions: camera phones and paper-based microfluidic devices for real-time, off-site diagnosis. Anal. Chem. 80 (10), 3699-3707 (2008).
  12. Martinez, A. W., Phillips, S. T., Whitesides, G. M. Three-dimensional microfluidic devices fabricated in layered paper and tape. Proc. Natl. Acad. Sci. USA. 105 (50), 19606-19611 (2008).
  13. Vella, S. J., et al. Measuring markers of liver function using a micro-patterned paper device designed for blood from a fingerprick. Anal Chem. 84 (6), 2883-2891 (2012).
  14. Nie, Z., Deiss, F., Liu, X., Akbulut, O., Whitesides, G. M. Integration of paper-based microfluidic devices with commercial electrochemical readers. Lab Chip. 10 (22), 3163-3169 (2010).
  15. Martinez, A. W., et al. Programmable diagnostic devices made from paper and tape. Lab Chip. 10 (19), 2499-2504 (2010).
  16. Connelly, J. T., Rolland, J. P., Whitesides, G. M. "Paper machine" for molecular diagnostics. Anal. Chem. 87 (15), 7595-7601 (2015).
  17. Schonhorn, J. E., Fernandes, S. C., Rajaratnam, A., Deraney, R. N., Rolland, J. P., Mace, C. R. A device architecture for three-dimensional, patterned paper immunoassays. Lab Chip. 14 (24), 4653-4658 (2014).
  18. Fernandes, S. C., Logounov, G. S., Munro, J. B., Mace, C. R. Comparison of three indirect immunoassay formats on a common paper-based microfluidic device architecture. Anal. Methods. 8 (26), 5204-5211 (2016).
  19. Deraney, R. N., Mace, C. R., Rolland, J. P., Multiplexed Schonhorn, J. E. patterned-paper immunoassay for detection of malaria and dengue fever. Anal. Chem. 88 (12), 6161-6165 (2016).
  20. Abramoff, M., Magalhaes, P. J., Ram, S. J. Image processing with ImageJ. Biophotonics Int. 11 (7), 36-42 (2004).
  21. Derda, R., et al. Multizone paper platform for 3D cell cultures. PLoS ONE. 6 (5), e18940 (2011).
  22. Mace, C. R., Deraney, R. N. Manufacturing prototypes for paper-based diagnostic devices. Microfluid. Nanofluidics. 16 (5), 801-809 (2014).
  23. Liu, H., Crooks, R. M. Three-dimensional paper microfluidic devices assembled using the principles of origami. J. Am. Chem. Soc. 133 (44), 17564-17566 (2011).
  24. Kalish, B., Tsutsui, H. Using Adhesive patterning to construct 3D paper microfluidic devices. J. Vis. Exp. (110), e53805 (2016).
  25. Scida, K., Cunningham, J. C., Renault, C., Richards, I., Crooks, R. M. Simple, sensitive, and quantitative electrochemical detection method for paper analytical devices. Anal. Chem. 86 (13), 6501-6507 (2014).
  26. Lewis, G. G., DiTucci, M. J., Baker, M. S., Phillips, S. T. High throughput method for prototyping three-dimensional, paper-based microfluidic devices. Lab Chip. 12 (15), 2630-2633 (2012).
  27. Kalish, B., Tsutsui, H. Patterned adhesive enables construction of nonplanar three-dimensional paper microfluidic circuits. Lab Chip. 14 (22), 4354-4361 (2014).
  28. Camplisson, C. K., Schilling, K. M., Pedrotti, W. L., Stone, H. A., Martinez, A. W. Two-ply channels for faster wicking in paper-based microfluidic devices. Lab Chip. 15 (23), 4461-4466 (2015).

Play Video

Cite This Article
Fernandes, S. C., Wilson, D. J., Mace, C. R. Fabrication of Three-dimensional Paper-based Microfluidic Devices for Immunoassays. J. Vis. Exp. (121), e55287, doi:10.3791/55287 (2017).

View Video