Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Neuroscience

عزل من الشعيرات الدموية الدماغية من أنسجة المخ البشري الطازج

Published: September 12, 2018 doi: 10.3791/57346

Summary

الشعيرات الدموية في الدماغ معزولة من أنسجة المخ البشري يمكن استخدامها كنموذج الإكلينيكية لدراسة وظيفة الحاجز تحت الظروف الفسيولوجية والفيزيولوجية المرضية. نقدم هنا، على بروتوكول أمثل لعزل الشعيرات الدموية في الدماغ من أنسجة المخ البشري الطازج.

Abstract

فهم وظيفة حاجز الدم في الدماغ تحت الظروف الفسيولوجية والفيزيولوجية المرضية أمر حاسم لوضع استراتيجيات علاجية جديدة أن عقد الوعد بتعزيز إيصال الأدوية الدماغ، وتحسين حماية الدماغ وعلاج الدماغ اضطرابات. ومع ذلك، دراسة الدالة البشرية حاجز الدم في الدماغ التحدي. ومن ثم، هناك حاجة ماسة إلى نماذج مناسبة. وفي هذا الصدد، تمثل الدماغ الشعيرات الدموية المعزولة من أنسجة المخ البشري أداة فريدة لدراسة وظيفة الحاجز كقريب من الحالة البشرية في فيفو قدر الإمكان. وهنا يصف لنا بروتوكولا أمثل لعزل الشعيرات الدموية من أنسجة المخ البشري في عالية غلة، ومع الحفاظ على جودة ونقاء. الشعيرات الدموية معزولة من أنسجة المخ البشري الطازج استخدام تجانس الميكانيكية والكثافة--التدرج الطرد المركزي والترشيح. بعد العزلة، يمكن استخدام الشعيرات الدموية الدماغ البشري لمختلف التطبيقات بما في ذلك فحوصات التسرب، وتصوير الخلايا الحية، وفحوصات المستندة إلى جهاز المناعة لدراسة تعبير البروتين ووظيفة أو نشاط إنزيم أو الإشارات داخل الخلايا. الشعيرات الدموية في الدماغ البشري معزولة نموذج فريد توضيح تنظيم وظيفة البشرية حاجز الدم في الدماغ. هذا النموذج يمكن أن توفر أفكاراً في أمراض الجهاز العصبي المركزي (CNS)، التي سوف تساعد في وضع استراتيجيات علاجية لعلاج اضطرابات الجهاز العصبي المركزي.

Introduction

حاجز الدم في الدماغ هي واجهة محكم الخاضعة للرقابة بين الدم والدماغ الذي يحدد ما يدخل ويخرج من الدماغ. تشريحيا، خلايا بطانية يؤلف حاجز الدم في الدماغ، وتشكل شبكة شعرية معقدة ومستمرة. فسيولوجيا، لوازم هذه الشبكة الشعرية الدماغ بالأوكسجين والعناصر الغذائية بينما في نفس الوقت التخلص من ثاني أكسيد الكربون والفضلات الأيضية. الأهم من ذلك، يدعم أدلة على أن التغييرات التي أدخلت على الحاجز يسهم في العديد من الأمراض، بما في ذلك مرض الزهايمر والصرع والسكتة الدماغية1،2،3،،من45 , 6 , 7-الدماغ خلايا بطانية أيضا بمثابة حاجز للعلاج بعرقلة الإقبال على المخدرات في الدماغ، على سبيل المثال-، العلاج الكيميائي من عديدة الأشكال glioblastoma بعد استئصال الورم8،9، 10. وفي هذا الصدد، الشعيرات الدموية المعزولة الدماغ البشري تمثل نموذجا حاجز الدم في الدماغ فريدة السابقين فيفو التي تشبه الحاجز خصائص الحية، التي تسمح بدراسة وظيفة الحاجز والخلل الوظيفي في مجال الصحة والمرض. في هذه المقالة، نحن نقدم بروتوكولا لعزل الشعيرات الدموية في المخ من الدماغ البشري على الدوام عالية جودة شعرية والعائد لدراسة في حاجز الدم في الدماغ.

في عام 1969، سياكوتوس وآخرون. 11 كانوا الأول من تقرير عزل الشعيرات الدموية في الدماغ من أنسجة الدماغ البقري والبشرية استخدام الكثافة المتدرجة الطرد المركزي، والزجاج حبة عمود الفصل. في وقت لاحق، غولدشتاين et al. 12 تحسين هذا الأسلوب بإضافة عدة خطوات الترشيح تقليل كمية الأنسجة اللازمة لدراسة الدماغ الشعيرات الدموية المعزولة من الفئران، مع المحافظة على النشاط الأيضي لنقل الجلوكوز. ومنذ ذلك الحين، الأمثل الباحثين إجراء العزل الشعرية مرات عديدة، وتحسين الأسلوب والدماغ نموذج شعري مع كل تكرار13،،من1415. على سبيل المثال، باردريدجي وآخرون. 16 عزل الأبقار الشعيرات الدموية باستخدام الهضم الأنزيمي بدلاً من التجانس الميكانيكية ومن ثم أقر في وقت لاحق بتعليق شعرية من خلال عامل تصفية شبكة 210 ميكرون وعمود حبة زجاج. هذه التعديلات تحسين وصمة الاستبعاد تريبان الأزرق من الشعيرات الدموية في الدماغ معزولة، وهكذا، زيادة صلاحية الخلايا البطانية. في أوائل التسعينات، دالير وآخرون. 17 عزل الشعيرات الأبقار والفئران التي كانت واضحة من الخلايا العصبية التلوث والمحافظة على النشاط الأيضي γ-جلوتامايل transpeptidase (γ-غطاس) والفوسفاتيز القلوية. وفي عام 2000، ميلر وآخرون. 18، تستخدم الفئران المعزولة والمخ الخنزيري الشعيرات الدموية في تركيبة مع الفحص المجهري [كنفوكل] لإظهار تراكم ركائز النقل في التجويف من الشعيرات الدموية. وفي وقت لاحق، واصل مختبرنا لتحسين إجراءات العزل الشعرية الدماغ وأنشأنا فحوصات النقل لتحديد الرتبة فبروتين سكري (ف-gp)19،،من2021، سرطان الثدي المقاومة البروتين (بكرب)،من2223، والمقاومة للأدوية المتعددة البروتين 2 (Mrp2)24 نشاط النقل. في عام 2004، قمنا بنشر تقريرين حيث استخدمنا الشعيرات الدموية في الدماغ الفئران المعزولة للتحقيق في مختلف مسارات الإشارات. في هارتز وآخرون. 21، وجدنا أن الببتيد endothelin-1 تخفيض سرعة وعكسية دالة النقل فسباق الجائزة الكبرى في الدماغ الشعيرات الدموية بالنيابة عن طريق مستقبلات (وب) ب مستقبلات endothelin، أكسيد النيتريك synthase (غ)، والبروتين كيناز ج (PKC). في باور et al. 19، أظهرنا التعبير عن مستقبلات برينان X مستقبلات النووية (PXR) والتحوير PXR أظهرت gp ف التعبير والنقل وظيفة في الشعيرات الدموية في الدماغ. في التجارب مع الفئران PXR أنسنة المحورة وراثيا، توسيع هذا الخط من البحوث، وأظهرت في فيفو تشديد حاجز طريق upregulating فسباق الجائزة الكبرى من خلال تفعيل هبكسر25. في عام 2010، هارتز، وآخرون. 26 استخدام هذا النهج لاستعادة تعبير البروتين gp ف ونقل النشاط في الفئران المعدلة وراثيا البشرية اميلويد السلائف البروتين (hAPP) التي أوفيريكسبريس hAPP. وعلاوة على ذلك، استعادة فسباق الجائزة الكبرى في hAPP الفئران انخفاضا كبيرا اميلويد بيتا (Aβ)40و42Aβ الدماغ مستويات.

بالإضافة إلى دراسة مسارات إشارات، يمكن استخدام الشعيرات الدموية في الدماغ معزولة لتحديد التغيرات في نفاذية الشعيرات الدموية التي نشير إلى كتسرب الشعرية. على وجه الخصوص، فحص التسرب "تكساس الأحمر" يستخدم لتقييم تسرب صبغة الفلورسنت "الأحمر تكساس" من التجويف الشعرية على مر الزمن، وهذه البيانات تستخدم فيما بعد لتحليل معدلات التسرب. تشير معدلات التسرب شعري زيادة مقارنة مع تلك من الشعيرات الدموية التحكم التغييرات في السلامة الجسدية ل حاجز الدم في الدماغ2. هذا قيمة لأن هناك العديد من الدول الأمراض المرتبطة باضطراب الحاجز، على سبيل المثال-، الصرع والتصلب المتعدد، ومرض الزهايمر، والدماغ إصابة27،،من2829، 30. واستخدمت المجموعات الأخرى أيضا الشعيرات الدموية المعزولة تمييز مسارات الإشارات التي تنظم التعبير البروتين ونشاط النقل من البروتينات31،32،،من3334، 35،،من3637. وأخيراً، لقد واصلنا تحسين هذا الأسلوب لعزل الشعيرات الدموية في الدماغ البشري، ومؤخرا، أظهرنا زيادة gp ف التعبير في حاجز الدم – المخ البشري في المرضى المصابين بالصرع مقارنة بالأفراد التحكم خالية من الاستيلاء على38 . وتظهر هذه التطورات مجتمعة، أن الشعيرات الدموية في الدماغ معزولة يمكن نموذجا تنوعاً لدراسة وظيفة الحاجز.

وقد استخدمت مختلف المجراة، السابقين فيفو، ونماذج في المختبر حاجز الدم في الدماغ في البحوث الأساسية وفحص المخدرات الصناعية، أساسا بهدف اختبار إيصال المخدرات إلى الدماغ39،40،41 42، ،،من4344. بالإضافة إلى عزل السابقين فيفو الشعيرات الدماغ، الحالي حاجز الدم في الدماغ نماذج تشمل نماذج في السيليكون ، في المختبر الثقافة خلية من خلايا الدماغ معزولة بطانية الشعرية أو خطوط الخلايا مخلدة من مختلف الأنواع، ونماذج الثقافة في المختبر للخلايا الجذعية البشرية pluripotent (هبسك) التي تفرق في خلايا الدماغ بطانية الشعرية، وموائع جزيئية على شريحة.

نماذج في السيليكون هي الأكثر شيوعاً في تطوير العقاقير لاختيار المرشحين المخدرات استناداً إلى توقع امتصاص وتوزيع والايض وخصائص الإفراز (ADME). أساليب مثل الكمية هيكل الملكية العلاقة (كسبر) نماذج ونماذج الهيكل الكمي والنشاط العلاقة (QSAR) هي الأساليب شيوعاً واستخداما في الفرز الفائق للمكتبات للتنبؤ باختراق الدماغ المخدرات المرشحين 45 , 46-هذه النماذج مفيدة لجزيئات الشاشة لخصائص اختراق الحاجز.

بيتز et al. 47 إنشاء مونولاييرس خلايا الدماغ مثقف بطانية الشعرية كنظام نموذجي حاجز الدم في الدماغ في المختبر . في المختبر خلية ثقافة النماذج باستخدام أنسجة جديدة أو خطوط الخلايا غشائي مخلدة مثل خلايا بطانية ميكروفيسيل المخ البشري (هكميكس) يمكن أن تكون أداة الفرز الفائق أخرى لاختراق الدماغ أو الدراسات الميكانيكية. ومع ذلك، تفتقر إلى إجهاد القص الفسيولوجية لتدفق الدم داخل التجويف الشعرية نماذج الثقافة الشعرية خلية غشائي الدماغ ومحدودة في تعقيد البيولوجية عموما وتغيرات في التعبير والترجمة من مكونات حاجزاً هاما مثل البروتينات مفرق ضيق والقنوات المستقبلات السطحية والناقلين، والأنزيمات، وأيون48،،من4950. على العكس من ذلك، مونولاييرس بطانية المستمدة من هبسكس، نفاذية السكروز منخفضة بالمقارنة مع هكميك/D3 الثقافات وتحتوي على تعبير الاستقطاب بعض الناقلين حاجز الدم في الدماغ، وجزيئات الالتصاق وتقاطعات ضيق51، 52-ومع ذلك، تخضع هذه الخلايا أيضا على تغيير خصائص في الثقافة، ويجب أن يتم التحقق من صحة النظام لأن خلاصة في فيفو الحاجز خصائص52.

أحدث الاتجاهات في مجال البحوث حاجز الدم في الدماغ وتشمل استخدام أنظمة زراعة الأنسجة ثلاثية الأبعاد لإنشاء الشعيرات الاصطناعية، استخدام تكنولوجيا رقاقة على الجهاز لإنشاء أجهزة موائع جزيئية، أو استخدام تكنولوجيا الألياف المجوفة53، 54 , 55-الشعيرات الدموية الاصطناعية، ومع ذلك، قد أقطار أكبر بشكل ملحوظ (100-200 ميكرومتر) من الشعيرات الدموية في الدماغ (3 – 7 ميكرومتر). ومن ثم فالقص القوات في المختبر لا تماما تشبه الحالة في فيفو . ويتناول هذا هو أجهزة موائع جزيئية "بلودبرينباريروناتشيب"، حيث يتم ضخ المقصورات "الدم" و "الدماغ" النموذج الأغشية الاصطناعية والسوائل من خلال هذه الأجهزة توليد قوي القص موائع جزيئية. وبالمثل، الثقافات المشتركة لخلايا العضلات الملساء والأوعية الدموية وخلايا بطانية في توليفات مختلفة مع astrocytes استخدمت أيضا مع تكنولوجيا الألياف الجوفاء لإعادة انسيابية معلمات موجودة تحت في فيفو ظروف56 , 57 , 58-بيد أنه من غير الواضح مدى هذا النموذج يعكس خصائص أخرى لحاجز الدم في الدماغ مثل النقل، والايض، والإشارات، وغيرها. هذه النماذج الشعرية والرقائق الاصطناعية مناسبة للفرز الفائق للمخدرات، ولكن الخلايا المستخدمة لإنشاء هذه النماذج أيضا عرضه للتغيير خلال الثقافة.

شرائح مجمدة وثابتة في الدماغ أو المخ الأولية الثقافات الخلية البطانية الشعرية هي نماذج إضافية يمكن استخدامهادراسة ميكروفاسكولاتوري البشري5،59،،من6061. على سبيل المثال، إيمونوهيستوتشيميستري أنسجة المخ الثابتة المستخدمة لتحديد البروتين التعريب والتعبير في صحة جيدة مقارنة بالانسجة المريضة.

بالإضافة إلى النماذج في المختبر وشرائح الأنسجة يمكن أن تستخدم الشعيرات الدموية في الدماغ الموصوف أعلاه، طازجة معزولة لدراسة وظيفة حاجز الدم في الدماغ. القيود المفروضة على هذا النموذج الشعرية معزولة تشمل صعوبة الحصول على أنسجة المخ البشري الطازجة، نظراً لغياب أستروسيتيس والخلايا العصبية، وهي عملية تستغرق وقتاً طويلاً نسبيا من عزلة. ميزة نموذج شعري الدماغ المعزول هو أن هذا النموذج يشبه الوضع في فيفو ، وذلك، يمكن استخدامها لتوصيف وظيفة الحاجز والخلل الوظيفي. الأهم من ذلك، يمكن أيضا استخدامه لتمييز آليات إرسال الإشارات باستخدام العديد من الاختبارات والتقنيات الجزيئية3،19،،من6263.

لدينا مختبر لديه حق الوصول إلى أنسجة المخ البشري الطازجة والمجمدة على حد سواء من خلال مركز براون ساندرز في الشيخوخة (IRB #B15-2602-M)64. وفي هذا السياق، اتبع تشريح بروتوكول قياسي، يتم الحصول على العقول في < ح 4، وجميع إجراءات تتفق مع "المعاهد الوطنية للصحة بيوسبيسيمين المبادئ التوجيهية للممارسة الفضلى"65. ونظرا لهذا الوصول فريدة من نوعها لانسجة المخ البشري، نحن المنشأة والأمثل بروتوكولا لعزل الشعيرات الدموية في الدماغ من أنسجة المخ البشري الذي يؤدي إلى ارتفاع عائد من الشعيرات الدموية في الدماغ البشري سليمة ومجدية. نقطتي النهاية المشتركة ذات الاهتمام لتحديد البروتين التعبير والنشاط. وفي هذا الصدد، نحن وآخرون قد أنشأت الاختبارات المختلفة التي يمكن استخدامها مع الشعيرات الدموية في الدماغ معزولة لدراسة البروتين التعبير ومستويات النشاط. وتشمل هذه الاختبارات النشاف الغربية، مقايسة "الغربية بسيطة"، المرتبط بالانزيم المرتبط بالانزيم (ELISA)، والنسخ العكسي تفاعل البوليميراز المتسلسل (RT-PCR)، الكمية البلمرة المتسلسل (قبكر)، زيموجرافي، فحوصات نشاط النقل، و فحوصات تسرب الشعرية. هذه الاختبارات تسمح للباحثين دراسة التغيرات في وظيفة الحاجز في ظروف مرضية البشرية وتحديد المسارات التي تحكم التعبير البروتين والنشاط، وتحديد أهداف دوائية لعلاج حاجز الدم في الدماغ المرتبطة الأمراض.

اتخذت معا، طازجة الشعيرات الدموية في الدماغ معزولة يمكن اعتبارها نموذج قوي واستنساخه من حاجز الدم في الدماغ. وبخاصة، يمكن الجمع بين هذا النموذج مع العديد من فحوصات مختلفة لتحديد مجموعة واسعة من النتائج النهائية لدراسة وظيفة الحاجز.

Subscription Required. Please recommend JoVE to your librarian.

Protocol

المعلومات الواردة أدناه يستند إلى السلامة الحالية والمعايير التنظيمية في جامعة كنتاكي، ليكسينغتون، كنتاكي، الولايات المتحدة الأمريكية. وكإجراء وقائي سلامة، الرجوع إلى برنامج السلامة البيولوجية للمؤسسة وأحدث الأنظمة والتوصيات قبل العمل مع الأنسجة البشرية.

تنبيه: الأنسجة البشرية يمكن أن تكون مصدرا لمسببات الأمراض المنقولة بالدم، بما في ذلك فيروس نقص المناعة البشرية (فيروس الإيدز)، فيروس التهاب الكبد ب (HBV)، وفيروس التهاب الكبد الوبائي (سي) وغيرها. العمل مع الأنسجة البشرية يشكل خطر الإصابة من مسببات الأمراض المنقولة بالدم. ولذلك، بعض الاعتبارات التنظيمية والسلامة لا بد عند العمل مع النسيج البشري لحماية العاملين في المختبرات. يتطلب العمل مع الأنسجة البشرية في الولايات المتحدة معمل مستوى 2 للسلامة البيولوجية، فضلا عن احتياطات السلامة والتدريب وفقا للمعاهد الوطنية للصحة الفرع الرابع-ب-7، وقانون OSHA 5(a)(1) شرط عام 1970 وبرنامج السلامة البيولوجية المؤسسي الخاص بالمستخدم. بشكل عام، يجب الحصول على موافقة لجنة السلامة الأحيائية المؤسسية و/أو المؤسسية استعراض المجلس قبل إجراء أي بحوث تتعلق المواد البشرية (الأنسجة وسوائل الجسم). التدريب المطلوب لجميع العاملين مع المواد البشرية ويشمل التدريب على السلامة المختبرية الأساسية، مثلاً، والنظافة الصحية الكيميائية وسلامة المختبرات،، فضلا عن التدريب محددة بشأن السلامة البيولوجية، والنفايات الخطرة، والإنسان مسببات الأمراض المنقولة بالدم. ينصح جميع الموظفين الذين يتعاملون مع المواد البشرية للحصول على لقاحات التهاب الكبد B، قبل العمل مع المواد البشرية. الموظفين مطالبون بارتداء معدات الحماية الشخصية المحددة أثناء العمل مع المواد البشرية، على سبيل المثال-، معطف مختبر طول ووجه الدرع، وارتداء القفازات في كل الأوقات. يتم تنفيذ جميع الأعمال في مجال السلامة الأحيائية مجلس الوزراء (الفئة 2). تتم معالجة جميع المعدات التي تأتي في اتصال مع المواد البشرية والنفايات وعلى أي من المواد البشرية على نحو ملائم لمنع التلوث و/أو الإصابة من الأفراد. يتم تنظيف جميع المعدات والأسطح مع الإيثانول التبييض و 75% 10% بعد كل إجراء من الإجراءات التي تنطوي على المواد البشرية. يجب أن يتم تنظيف تسرب مواد البشرية فورا. الأواني الزجاجية يعقم بعد كل استعمال. النفايات، بما في ذلك الأنسجة البشرية غير المثبتة، يتم جمعها في كيس نفايات مسمى واقية ويعقم. يتم جمع الأدوات الحادة في المسمى اوتوكلاف حاوية ثقب-ومانعة لتسرب. يتم التخلص من جميع النفايات من المواد البشرية وفقا لقواعد السلامة البيولوجية للمؤسسة.

ملاحظة: يحصل مختبرنا عينات القشرة الأمامية جديدة من الأفراد المتوفين من خلال مركز براون ساندرز في الشيخوخة (IRB #B15-2602-م). معايير الاشتمال: الالتحاق بالدراسة الأتراب التشريح طولية ADC المملكة المتحدة ودي فور الجثة "الفاصل زمني" (PMI) ح64. تشريح اتباع بروتوكول قياسي وجميع إجراءات تتفق مع "المعاهد الوطنية للصحة بيوسبيسيمين المبادئ التوجيهية للممارسة الفضلى"65. PMI قصيرة لأقل من 4 ح من أهمية قصوى لضمان استمرارية الشعرية بعد عزلة. ويمكن استخدام الأنسجة الطازجة والمجمدة على حد سواء. إذا كان من الضروري تجميد، أنسجة المخ البشري التي تم الحصول عليها حديثا ينبغي تجميد صدمة في النتروجين السائل، والمخزنة في-80 درجة مئوية. وينبغي تخزين في معزل عن المخزن المؤقت (انظر أدناه) الأنسجة الطازجة أو المذابة ومعالجتها بسرعة. ونجد أن 10 جرام من الأنسجة البشرية الطازجة الغلة حوالي 100 ملغ من الشعيرات الدموية في الدماغ (الوزن الرطب).

1-الإعداد

  1. إعداد المخزن المؤقت
    ملاحظة: حجم المخزن المؤقت المطلوبة يعتمد على كمية الأنسجة. وتستند جميع وحدات تخزين المخزن المؤقت في البروتوكول التالي 10 جرام أنسجة قشرة المخ البشري.
    1. L عزلة المخزن المؤقت: استخدام 1.5 لتر من الفوسفات مخزنة المالحة دولبيكو (دببس؛ 2.7 مم بوكل، 1.47 مم خ2ص4، مم 136.9 كلوريد الصوديوم، 8.1 مم نا2هبو4، 0.9 مم كاكل2، 0.49 ملم مجكل2) والملحق مع 5 ملم د-الجلوكوز (1.35 g ) وبيروفات صوديوم 1 مم (0.165 ز). بعد إضافة السكر وبيروفات، ضبط على درجة الحموضة 7.4 مع هيدروكسيد الصوديوم. بارد، وتخزين المخزن المؤقت إلى 4 درجة مئوية قبل الاستخدام.
    2. ألبومين المصل البقري (BSA): إضافة 10 غم مسحوق جيش صرب البوسنة إلى 1 لتر من عزلة المخزن المؤقت إلى تركيز جيش صرب البوسنة نهائي من 1%. يحرك ببطء تجنب فقاعات وضبط على درجة الحموضة 7.4 وتخزينها في 4 درجات مئوية بين عشية وضحاها. مباشرة قبل الاستخدام، يحرك بلطف؛ تجنب تشكيل فقاعات لتجنب تمسخ الزلال.
    3. كثافة متوسطة متدرجة: تزن 18 جرام من الكثافة المتوسطة التدرج في زجاجة زجاج وإضافة شريط إثارة مغناطيسية. إضافة 60 مل من المخزن المؤقت للعزلة واهتز بشدة لمدة 5 دقائق حتى تم تعليق جميع مسحوق. مخزن في 4 درجات مئوية للسماح المتوسطة الكثافة المتدرجة حل بين عشية وضحاها. يحرك لمدة 10 دقيقة قبل الاستخدام.
    4. تخزين كافة المخازن المؤقتة عند 4 درجة مئوية؛ الاحتفاظ بجميع أدوات والمخازن المؤقتة على الجليد أثناء إجراء العزل الكامل. تحريك كافة المخازن المؤقتة قبل الاستخدام.
  2. الإعداد التجريبية
    1. جبل مدقة مطحنة الأنسجة الفيهجيم بوتر إلى محرض النفقات العامة الإلكترونية. ضع طاحونة الأنسجة ألفهيم بوتر والخالطون دونس مع مدقة على الجليد تحت غطاء محرك السيارة. إعداد شبكة تصفية 300 ميكرون (5 × 5 سم2)، قم بطيها لمخروط، وإدراج وإرفاقه 50 مل من أنبوب الصقر مع الشريط (الشكل 1A).
    2. مكان حلقات الاتصال وخلية مرشحات سلالة (المسامية الحجم: 30 ميكرومتر) في أنابيب فالكون 50 مل. إعداد اوتوكلاف أكياس النفايات. ضع كل ما يلزم من معدات في مجال السلامة الأحيائية مجلس الوزراء (انظر الجدول للمواد).

2-إعداد نموذج الدماغ

ملاحظة: يظهر الشكل 1A مخطط سير العمل لعزل كامل الإجراء الموضح أدناه. أنسجة المخ البشري يمكن أن تنبع من أي جزء من القشرة ويمكن استخدامها طازجة أو مجمدة. ويمكن إذابة أنسجة المخ المجمدة في درجة حرارة الغرفة (أي مخزن مؤقت؛ ~ 30 دقيقة عن 10 جرام). لتحقيق نتائج مماثلة، ينبغي الحصول على أنسجة المخ من نفس المنطقة الدماغ لكل تجربة. هذا البروتوكول هو الأمثل الطازجة (PMI < ح 4) قشرة الدماغ البشري قد لا تم تجميدها.

  1. إعداد أنسجة المخ البشري: الوثيقة وزن أنسجة المخ. جميع الأرقام في البروتوكول التالية مناسبة ل 10 جرام أنسجة المخ البشري الطازج. وضع أنسجة المخ في 100 مم طبق بيتري. بعناية إزالة كافة السحايا بالملقط. استخدام مشرط لقطع هذه المسألة الأبيض.
  2. تنميق لانسجة المخ البشري: تقطيع أنسجة المخ وفرم أنه مع مشرط بعناية. اللحم المفروم لمدة 5 دقائق تقريبا (قطعة 2 – 3 مم). نقل أنسجة المخ إلى طاحونة الأنسجة ألفهيم بوتر. إضافة 30 مل من المخزن المؤقت للعزلة.
    ملاحظة: قطع الأنسجة مفروم هناك صعوبة في رؤية منذ أنسجة المخ يتحول إلى مش عن طريق عملية تنميق.

3-تجانس

  1. مطحنة النسيج ألفهيم بوتر (التخليص: ميكرومتر 150-230): مجانسة كل عينة بحدود 100 بسرعة الخالطون 50 لفة في الدقيقة. الوثيقة الوقت كل السكتات الدماغية 25 وإجمالي الوقت اللازم للسكتات الدماغية 100. انظر الجدول 1 لبروتوكول تجانس المقترحة؛ الوقت الإجمالي للمجانسة 10 جرام لحاء أمامي البشرية حوالي 22 دقيقة. لا يحرك في الهواء لمنع الفقاعات.
  2. الخالطون دونس (التخليص: 80 – 130 ميكرومتر): نقل هوموجيناتي إلى الخالطون دونس على الجليد. مجانسة التعليق مع 20 السكتات الدماغية (~ 6 s/السكتة الدماغية، مجموع من ~ 2 دقيقة). تجنب الفقاعات.

4-الطرد المركزي

  1. توزيع هوموجيناتي الدماغ على قدم المساواة إلى أربعة أنابيب الطرد المركزي 50 مل والوثيقة الحجم الإجمالي هوموجيناتي. توزيع 50 مل من الكثافة المتدرجة المخزن المؤقت في أنابيب الطرد المركزي (12.5 مل في الأنبوب). استخدام 10 مل من عزلة المخزن المؤقت شطف بالمدقة والخالطون، وتوزيعها في أربعة أنابيب الطرد المركزي (مل ~2.5 في الأنبوب).
  2. أحكام إغلاق أنابيب الطرد المركزي مع أحرف استهلالية. مزيج هوموجيناتي والمتوسطة الكثافة المتدرجة، والمخزن المؤقت بقوة تهز الأنابيب. الطرد المركزي في س 5,800 ز لمدة 15 دقيقة في 4 درجات مئوية (زاوية ثابتة دوار)؛ حدد سرعة تباطؤ في متوسط للحفاظ على بيليه المرفقة بالأنبوبة. تجاهل المادة طافية وريسوسبيند كل بيليه في 2 مل من 1% جيش صرب البوسنة.

5-الترشيح

ملاحظة: لفصل الشعيرات الدموية من خلايا الدم الحمراء وغيرها من الحطام خلية، ضرورية عدة خطوات الترشيح.

  1. 300 ميكرون: بعد إعادة تعليق بيليه، تصفية تعليق عن طريق 300 ميكرون. الشعيرات الدموية يتم تصفيتها من خلال الشبكة، بينما تظل سفن أكبر حجماً وأكبر الدماغ الحطام على الشبكة. أغسل بعناية مش مع تصل إلى 50 مل من 1% جيش صرب البوسنة. تجاهل الشبكة.
    ملاحظة: هذه الخطوة الترشيح مسح تعليق الشعرية من أي سفن أو قطع من الحطام المخ أكبر.
  2. تصفية سلالة خلية 30 ميكرومتر
    ملاحظة: هذه الخطوة الترشيح يفصل الشعيرات الدموية من خلايا الدم الحمراء وغيرها من الحطام الدماغ.
    1. توزيع filtrate الشعرية من الخطوة 6.1 أكثر مرشحات سلالة الخلية خمسة 30 ميكرومتر (حوالي 10 مل فيلتراتي الشعرية كل مرشح سلالة الخلية). الشعيرات الدموية تجري مرة أخرى بعامل التصفية هذا، بينما خلايا الدم الحمراء وخلايا مفردة أخرى، والحطام الصغيرة الدماغ يمر عن طريق التصفية ويتم جمعها في فيلتراتي.
    2. تغسل كل مرشح مع 25 مل من 1% جيش صرب البوسنة. بعد ذلك، صب جميع فيلتراتيس على عامل التصفية السادسة لزيادة الغلة. تغسل كل مرشح مع 50 مل من جيش صرب البوسنة 1%؛ تبقى الخلية مرشحات الضغط مع تحتوي على الشعيرات الدموية وتجاهل في فيلتراتي.

6-المجموعة الشعرية

  1. تشغيل عوامل التصفية رأسا على عقب وغسل الشعيرات الدموية مع 50 مل من جيش صرب البوسنة 1% لكل مرشح إلى أنابيب 50 مل. بلطف تطبيق الضغط بطرف بيبيت بيبيتور 5 مل ونقله عبر عامل التصفية ليغسل الشعيرات الدموية في الدماغ.
  2. تأكد من يغسل جميع الشعيرات الدموية في الدماغ، لا سيما من حافة التصفية. تجنب فقاعات لأن هذا يزيد من صعوبة عملية الترشيح ويزيد من فرصة لفقدان الشعرية.

7-الغسل

  1. وبعد جمع الشعيرات الدموية، الطرد المركزي جميع العينات في س 1,500 ز لمدة 3 دقيقة في 4 درجات مئوية (يتأرجح دلو الدوار). إزالة المادة طافية وإعادة تعليق بيليه في حوالي 3 مل من المخزن المؤقت للعزلة. الجمع بين جميع الكريات ريسوسبينديد من عينة واحدة في أنبوب مخروطي 15 مل وملء مع المخزن المؤقت للعزلة. الطرد المركزي مرة أخرى في س 1,500 ز لمدة 3 دقائق في 4 درجات مئوية ويغسل مرتين أخريين.
  2. الوثيقة نقاء شعري مع المجهر (100 X التكبير) والكاميرا (الشكل 1B).
    ملاحظة: العائد الشعرية الدماغ من 10 جرام أنسجة المخ البشري عادة حوالي 100 ملغ. الشعيرات الدموية الدماغ معزولة يمكن أن تستخدم الآن للتجارب، ومعالجتها (مثلاً.،، عزل غشاء)، أو يكون فلاش المجمدة والمخزنة في-80 درجة مئوية في كريوتوبيس للحد أدنى من 6-12 شهرا (تجنب دورات تجميد أذاب متعددة).

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

العزلة المفروضة من أنسجة المخ البشري تسفر عن تعليق التخصيب في الدماغ البشري الشعيرات الدموية (الشكل 1B) مع كميات صغيرة من السفن الأكبر حجماً، وخلايا الدم الحمراء، وخلايا مفردة أخرى، وبعض الحطام خلية. يتم تفريعها بعض الشعيرات الدموية، وهي شرك في بعض خلايا الدم الحمراء في لومن الشعرية. الشعرية النموذجية التي يبلغ قطرها 3-7 ميكرون وهو حوالي 100-200 ميكرومتر طويلة مع لومن مفتوحة؛ ويتم طي معظم نهايات الشعيرات الدموية. استخدام الفحص المجهري [كنفوكل]، تكشف الشعيرات الدموية في الدماغ البشري معزولة عن هيكل أنبوبي، سليمة ومورفولوجيا. ويبين الشكل 2 ألف ممثل المرسلة بصورة خفيفة من الدماغ البشري الشعرية مع بيريسيتي مرفقة وخلايا الدم الحمراء في التجويف. النتائج المتعلقة بالقطر والحجم ومورفولوجيا كلها وفقا لتقارير سابقة بشأن هيكل الدماغ معزولة الشعيرات الدموية12،،من1718. وكان الدماغ البشري معزولة الشعرية في الشكل 2 إيمونوستاينيد لف-gp (الأخضر) باستخدام C219 كجسم الأولية (1 ميكروغرام/مل)؛ كانت كونتيرستينيد نوى مع DAPI (1 ميكروغرام/مل).

Figure 1
رقم 1: مخطط انسيابي لعزل الشعرية. (أ) الرسم التخطيطي يوضح الخطوات الرئيسية للإجراء لعزل الشعيرات الدموية في الدماغ من الأنسجة البشرية الطازجة. (ب) الصورة يظهر الشعيرات الدموية في الدماغ البشري معزولة تحت مجهر خفيفة مباشرة بعد عزلة (100 X التكبير). الرجاء انقر هنا لمشاهدة نسخة أكبر من هذا الرقم-

Figure 2
رقم 2: الدماغ البشري معزولة الشعرية. (أ) بنقل الضوء الصورة الشعرية في المخ البشري معزولة. توضح الصورة (ب) المجهر [كنفوكل] دماغ البشري معزولة إيمونوستينيد شعرية ل gp ف (الخضراء؛ C219 1 ميكروغرام/مل)؛ وقد كونتيرستينيد الأنوية مع DAPI (أزرق؛ 1 ميكروغرام/مل). الرجاء انقر هنا لمشاهدة نسخة أكبر من هذا الرقم-

Figure 3
الشكل 3: استكشاف الأخطاء وإصلاحها كثافة استخدام الطرد المركزي. يظهر الرسم التخطيطي الإعداد بعد الطرد المركزي التدرج كثافة. وتبرز آثار الكثير والقليل الكثافة المتوسطة التدرج، وكيف يؤثر هذا على الفصل وبيليه الشعرية الناتجة عن ذلك. الرجاء انقر هنا لمشاهدة نسخة أكبر من هذا الرقم-

Figure 4
الشكل 4: تعبير البروتين فسباق الجائزة الكبرى في الشعيرات الدموية في الدماغ البشري معزولة. لطخة غربية يظهر العصابات القوية للرتبة فسباق الجائزة الكبرى (1 ميكروغرام/مل) في الشعيرات الدموية البشرية المعزولة بالمقارنة مع الخلايا hCMEC\D3. Β-أكتين استخدمت كعنصر تحكم تحميل (1 ميكروغرام/ميليلتر). الرجاء انقر هنا لمشاهدة نسخة أكبر من هذا الرقم-

Figure 5
الرقم 5: طلبات للحصول على دماغ الإنسان معزولة الشعيرات الدموية. لمحة عامة عن التطبيقات الأكثر شيوعاً الشعيرات الدموية في الدماغ معزولة نشرت في الأدب. الشعيرات الدموية المعزولة التي استخدمت ل: 1) علم الجينوم85،86, 2) البروتيوميات3،،من3887،،من8889،90، 91،،من9294،،من9596، 3) البروتيوميات الوظيفية2،38، و 4) سيلوميكس82، 83،،من8497،،من9899. الرجاء انقر هنا لمشاهدة نسخة أكبر من هذا الرقم-

السكتات الدماغية الوقت [دقيقة]
1-25 7 – 7.5
26-50 5-5.5
51-75 5-5.5
76-100 5-5.5
مجموع الوقت: 22-24 دقيقة

الجدول 1: بروتوكول التجانس. بروتوكول التجانس لطاحونة الأنسجة بوتر-ألفهيم مجانسة 10 جرام قشرة البشرية أمامي بسرعة تحقيق تجانس في الدقيقة 50. علما أن ضربات عدة الأولى تتطلب وقتاً إضافيا مجانسة الأنسجة مفروم. وبعد هذا التجانس الأولية، كل السكتة الدماغية هو 12 s في المدة (6 s للحركة الهبوطية، 6 s لحركة تصاعدية). وهكذا، بعد تجانس الأولية، يمكن إنجاز السكتات الدماغية 5 في 1 دقيقة، أو السكتات الدماغية 25 في 5 دقائق.

المشكلة السبب المحتمل الحل
لا بيليه الشعرية 1) تركيز فيكل غير صحيحة 1) ضبط تركيز فيكل
2) سرعة الطرد المركزي غير صحيحة 2) ضبط سرعة الطرد المركزي
3) السرعة التسارع أو التباطؤ غير صحيحة 3) ضبط السرعة التسارع أو التباطؤ
منخفضة الغلة الشعرية 1) السحايا عرقلة خطوات الترشيح 1) إزالة جميع السحايا قبل الترشيح
2) العديد من الشعيرات الدموية التي فقدت أثناء إجراء العزل 2) حساب تركيز المخزن المؤقت بشكل صحيح، وشطف نصائح ماصة
3) غسل الشعيرات الدموية قبالة المرشحات بلوريسترينير غير كافية 3) دورة مرشحات أكثر وتفتيش دقيق الشعيرات الدموية (استخدام المجهر)
4) فقاعات الزائدة خلال ريسوسبينسيونس 4) ماصة ببطء لتجنب الفقاعات
الشعيرات الدموية غير قابل للحياة 1) الفاصل الزمني للتشريح الموسعة 1) تقليل الفاصل الزمني إذا أمكن أو استخدام أدمغة مجمدة في الأداة الإضافية
استخدام 2) تجميد الأنسجة للعزلة 2) استخدام أنسجة جديدة
3) وقت العزل الداخلي طويل جداً 3) تحسين سير العمل
4) المعدات/المخازن المؤقتة لم يحتفظ بالثلج أثناء إجراء العزل 4) الحفاظ على المعدات والمخازن المؤقتة على الجليد أثناء عزلة

الجدول 2: استكشاف الأخطاء وإصلاحها لمشاكل مشتركة. قائمة الأخطاء الأكثر شيوعاً والمشاكل التي تحدث أثناء إجراء العزل، وكيف يمكن حلها.

Subscription Required. Please recommend JoVE to your librarian.

Discussion

ويصف هذا البروتوكول عزلة الشعيرات الدموية في الدماغ البشري سليمة وقابلة للاستمرار من أنسجة جديدة. في هذا القسم، نناقش بالتفصيل ما يلي: 1) التعديلات على البروتوكول، 2) استكشاف الأخطاء وإصلاحها من الأخطاء الشائعة، 3) قيود تقنية، 4) أهمية النموذج فيما يتعلق بالقائمة والنماذج البديلة حاجز الدم في الدماغ، و 5). التطبيقات المحتملة الشعيرات الدموية في الدماغ البشري معزولة.

البروتوكول الموصوفة هنا هو الأمثل ل 10 جرام أنسجة اللحاء أمامي البشرية الطازجة. ومع ذلك، بسيط نسبيا لتعديل هذا الإجراء من أجل: 1) أكثر أو أقل من 10 جرام من الأنسجة أو أنسجة المخ 2) المجمدة أو أنسجة المخ 3) من منطقة الدماغ بخلاف القشرة الأمامية. أولاً، مع أكثر أو أقل من 10 جرام أنسجة المخ وحجم المخازن المؤقتة الضرورية يمكن ببساطة أن يكون تحجيم أعلى أو أسفل المبلغ المتاح للأنسجة. وهكذا، إلا إذا كان يتوفر 5 غ أنسجة المخ، ينبغي تخفيض حجم المخازن المؤقتة بمقدار النصف. ثانيا، يصف لنا عزلة شعرية التي تستخدم أنسجة المخ الطازج، ولكن يمكن استخدام الأنسجة المجمدة إذا كانت الأنسجة الطازجة غير متوفرة38. ثالثا، قمنا باستخدام أنسجة المخ جديدة مأخوذة من القشرة الأمامية، ولكن الشعيرات الدموية قد تكون معزولة من الدماغ القشرية المناطق الأخرى إذا لم يكن هناك ما يكفي من الأنسجة المتاحة. من الممكن أيضا لعزل الشعيرات الدموية من مناطق الدماغ غير القشرية (مثلاً.، المسألة الأبيض)، ولكن هذه المناطق خلية مختلفة التكوين وشعري كثافة 66،67،68. وهكذا، استخدام أنسجة من منطقة الدماغ مختلفة يرجح أن يتطلب البروتوكول أن يكون تعديلها (مثلحجم المخزن المؤقت، وكثافة متوسطة متدرجة، سرعة الطرد المركزي و/أو عدة خطوات الترشيح).

إجراءات عزل الشعرية، بينما لا معقدة في حد ذاتها، حساس لاضطرابات صغيرة أو تعديلات في البروتوكول. قد يؤدي إجراء تعديلات في تناقص الغلة الشعرية أو تقليص صلاحية الشعرية. الجدول 2 يبين الأخطاء الأكثر شيوعاً والمشاكل التي تتم مواجهتها أثناء العزلة وتسرد هذه المقالة تلميحات لتجنب هذه الأخطاء وإيجاد الحلول لاستكشاف الأخطاء وإصلاحها في حالة حدوثها. المشكلة الأكثر شيوعاً المقترنة بهذا الإجراء عائد شعرية منخفضة. فقدان الشعيرات الدموية في كثير من الأحيان التراكمي مجموع الخسائر الصغيرة في كل خطوة وهو سبب الانحرافات الصغيرة عبر هذا الإجراء. خطوة حاسمة في كمية كبيرة من الشعيرات الدموية قد تكون فقدت هو الطرد المركزي الكثافة. وينتج بتركيز غير صحيح في المخزن المؤقت بكثافة غير صحيحة لفصل الشعيرات الدموية من الحطام الخلوية أن يقلل من حجم بيليه الشعرية. ويبين الشكل 3 المترتبة على القليل أو الكثير من المتوسطة الكثافة التدرج في خطوة الطرد المركزي بالنسبة إلى هوموجيناتي الدماغ. ضبط إلى الصحيحة التركيز قد حل هذه المشكلة. علما أن سرعة التسارع والتباطؤ أجهزة الطرد المركزي يمكن أن تؤثر أيضا على تشكيل بيليه الشعيرات الدموية في الدماغ. الشعيرات الدموية قد تكون أيضا فقدت خلال الخطوات 6-7 إذا كان جزء من المواد الشعرية العصي لنصائح ماصة. ويمكن معالجة هذه المسألة بدقة الشطف كل نصيحة بيبيت قبل تغييرها. أثناء الخطوة 7، الغسيل خارج الشعيرات الدموية من التصفية سلالة الخلية قد تكون ناقصة أو الشعيرات الدموية قد تتمسك بحافة التصفية. يمكن تجنب هذا عن طريق التحقق من عامل التصفية تحت المجهر تليها خطوات الغسيل إضافية. يمكن أن ينتج فقدان الشعيرات الدموية خلال كل خطوة من إجراءات العزل بيليه شعرية ضئيلة أو لا تكفي المواد الشعرية لمزيد من المعالجة والتجريب.

عزل الشعيرات الدموية في الدماغ من الأنسجة البشرية الطازجة يمثل نموذجا فريداً حاجز الدم – المخ يشبه الوضع في فيفو . ومع ذلك، توجد عدة قيود تقنية. واحد التحديات هو توافر أنسجة بشرية جديدة. كما PMI الأمثل ح دي فور، لن تكون أنسجة الدماغ التي تم جمعها في PMI أطول بشكل ملحوظ الطازجة ما يكفي لبعض التطبيقات المتلقين للمعلومات. وفي بعض الحالات، قد يكون من الصعب الحصول على كميات الأنسجة التي كبيرة بما يكفي لعدة مجموعات تجريبية، مما أدى إلى تقييد التطبيقات المتلقين للمعلومات. وهكذا، عزل الشعيرات الدموية جديدة من القوارض1969من الكلاب، والأبقار42أو أنسجة المخ الخنزيري70 قد يكون أكثر ملاءمة نموذج حاجز الدم في الدماغ. العوامل التي تحدد تباين أنسجة المخ البشري مثل العمر والجنس، والعرق، وحالة المرض وتاريخ الدواء، الدماغ منطقة العينة، والصليب الأحمر، ينبغي أن تؤخذ في الاعتبار عند تفسير ونشر البيانات. على المستوى تجريبي من المهم ملاحظة أن الشعيرات الدموية المعزولة لا تزال تتضمن بيريسيتيس، ولكن تتم إزالة اندفيت أستروسيتيك بواسطة الإجراء44. من الضروري أن تؤخذ في الاعتبار أن النموذج المعروض هنا يخدم كنموذج فيفو السابقين من حاجز الدم في الدماغ (أي، خلايا بطانية الشعرية) ولكن ليس كنموذج لوحدة نيوروفاسكولار.

العمل مع أي من الأنسجة البشرية دائماً يمثل خطرا سلامة الكامنة والباحثين يجب اتخاذ الاحتياطات المناسبة أثناء إجراء العزل لتجنب العدوى. على وجه التحديد، في الولايات المتحدة، والعمل مع الأنسجة البشرية يتطلب مساحة المختبرات المعينة BSL 2 معتمدة وتشمل خزانة السلامة الأحيائية (فئة A2). وبالإضافة إلى ذلك، يجب استخدام الموظفين معدات الوقاية الشخصية (أي.، معطف مختبر، والقفازات، ودرع الوجه) ومكان مخصص للمعدات اللازمة للعمل مع الأنسجة البشرية وتنفيذ اوتوكلاف مناولة النفايات. تنفيذ تدابير السلامة هذه هو مضيعة للوقت وباهظة التكلفة، ويزيد من صعوبة هذا الإجراء، خاصة بالنسبة لموظفي المختبرات عديمي الخبرة.

حاجز الدم في الدماغ هو يحافظ عاليا بين الكائنات الحية الجهاز العصبي المركزي المعالم71. النمذجة حاجز الدم – المخ البشري صعب لأن هناك مجمع neurovascular اقتران بين الخلايا لوحدة نيوروفاسكولار. وقدرت دماغ البشري الكبار في المتوسط حوالي 86 بیلیون من الخلايا العصبية ويعتقد بأن لديه تقريبا كل العصبية الشعرية الخاصة به في المنطقة المجاورة لضمان العرض السليم مع الأكسجين والمواد المغذية،من7273. خلايا بطانية الشعرية تشكل أكبر مساحة من واجهة الدم في الدماغ (12-18 م2 لإنسان الكبار صحية). تقاطعات ضيقة تمثل عائقا أمام مجموعة واسعة من فارماكوثيرابيوتيكس عن طريق حظر نشر باراسيلولار من الذوائب. وبالإضافة إلى ذلك، العديد من الدراسات التي تصف خلل الحاجز في اضطرابات الأعصاب، و على سبيل المثال-، مرض الزهايمر74،75من السكتة الدماغية، والصرع38،76،77من التصلب المتعدد، و الدماغ إصابة28،78. وبالتالي، من الضروري وضع نماذج عن كثب تمثل حاجز الدم – المخ البشري وتسمح بفهم أفضل لوظيفة الحاجز في الصحة والمرض.

توجد في المختبر خلية ثقافة نماذج عديدة من حاجز الدم في الدماغ؛ للحصول على ملاحظات الخبراء في هذا الموضوع راجع 41،،من4951،69،،من7980. بإيجاز، على حد سواء طازجة عزل خلايا الدماغ بطانية الشعرية للثقافة الأولية وتتوفر خطوط الخلايا الشعرية غشائي الدماغ مخلدة. الثقافات الأولية لخلايا المخ ميكروفيسيل بطانية تستخدم في الغالب من الماوس والفئران والخنازير والبقر. ومع ذلك، الثقافات الخلية الابتدائية كثيفة العمالة حيث يجب أن تكون الخلايا المعزولة حديثا. خطوط الخلايا الشعرية غشائي الدماغ مخلدة المتوفرة من الماوس، الجرذان، والإنسان، وهي كثيفة العمالة أقل نظراً لأنها يمكن أن تكون باساجيد للاستخدام طويل الأجل. ومع ذلك، قد خطوط الخلايا مخلدة حتى حد كيف في كثير من الأحيان أنها يمكن أن باساجيد قبل أن يفقد خصائصها غشائي. الخلايا الأولية فضلا عن خطوط الخلايا مخلدة تستزرع غالباً في لوحات لنموذج البطانة الشعرية الدماغ وقياس نقل الحاجز النفاذية والمخدرات عبر المونولاير الخلية، وبالتالي محاكاة نقل الدم إلى الدماغ41 ،،من8182. يمكن أيضا تعديل وسائط الثقافة في هذه النماذج أو تستكمل مع astrocytes أو بيريسيتيس أو غيرها من العوامل ذات الصلة فسيولوجيا مثل مخيم41،،من8384.

هو استفادة خطوط الخلايا مخلدة الوصول السهل نسبيا وتوافر. بينما يمكن أن تصل إلى خلايا بطانية مثقف التقاء، فإنها تفقد خصائص الخلية البطانية أنها تنمو جنبا بجنب في أحادي الطبقة. على سبيل المثال، عرض هكميكس مثقف التعبير مخفضة من الناقلين مثل فسباق الجائزة الكبرى والبروتينات مفرق ضيق وعرض متغير النفاذية إلى xenobiotics41. ويبين الشكل 4 غربية وصمة عار للتعبير البروتين فسباق الجائزة الكبرى في الخلايا هكميك/D3 مقارنة بالشعيرات الدموية البشرية الطازجة معزولة. على الرغم من كمية أقل إذ من مجموع البروتين، إشارة فسباق الجائزة الكبرى أقوى في عزلة الشعيرات الدموية البشرية مقارنة بالخلايا هكميك/D3. وهذا يشير إلى أن الخلايا هكميك/D3 فقدت قدرا كبيرا من التعبير البروتين فسباق الجائزة الكبرى في الثقافة. وعلاوة على ذلك، تؤثر الاختلافات في ثقافة وسائل الإعلام، والبيئة، ومعدات التدابير الرئيسية لسلامة الحاجز، أيقياسات طير في فحوصات لوحة ترانسويل. بعض من هذه القضايا يمكن التغلب عليها باستخدام نموذج الشعرية الدماغ معزولة أكثر عن كثب يمثل البشرية حاجز الدم في الدماغ في فيفو.

وقد استخدمت الشعيرات الدموية في الدماغ معزولة لمجموعة واسعة من الدراسات، بما في ذلك علم الجينوم، البروتيوميات، البروتيوميات الوظيفية، والدراسات سيلوميكس (الشكل 5). وبالإضافة إلى ذلك، توجد العديد من تقنيات وأساليب لتحليل الشعيرات الدموية في الدماغ معزولة داخل كل من هذه الحقول. جدير بالذكر أن يمكن استخدام التقنيات التجريبية هو موضح في الشكل 5 في الدماغ الشعيرات الدموية المعزولة من عدد من المصادر، بما في ذلك الأنسجة البشرية والأبقار والقوارض والخنزير، مما قد ييسر البحث متعدية الجنسيات. على سبيل المثال، لي et al. 85 درس علم الجينوم حاجز الدم – المخ باستخدام قمع الاختزالي التهجين بتنقية مرناً المعزولة من الشعيرات الدموية في الدماغ الفئران. بالإضافة إلى ذلك، أوت et al. 86 استخدام الرايت-بكر وبكر قرة لدراسة تنظيم فسباق الجائزة الكبرى من PXR. تستخدم العديد من البروتين الدراسات الغربية النشاف3، تحليل "لطخة دوت"87، "الغربية بسيطة" فحوصات3،38, أليسا88،89، إيمونوبريسيبيتيشن3، و إيمونوستينينج3،،من9091. لتمييز الناقل الاتجار في البطانة الدماغ، ماكافري et al. 92 استخدام تجزئة سوبسيلولار من الشعيرات الدموية في الدماغ معزولة. سانشيز ديل بينو وآخرون. يستخدم 93الحويصلات المعزولة غشاء غشائي البقري تبين اتجاه نقل الموقع والنقل عبر حاجز الدم في الدماغ. في دراسات أخرى البروتين، استخدم الباحثون اللوني السائل وجنبا إلى جنب الكتلي للتحديد الكمي لنقل البروتينات94،،من9596. وقد استخدمت الدراسات الفنية البروتين الناقل وتسرب فحوصات2،38. هارتز et al. 2 استخدام زيموجرافي لتحديد نشاط إنزيم في الدماغ معزولة الشعيرات الدموية. وبالإضافة إلى ذلك، قد ولدت البحوث سيلوميك الشاسعة باستخدام خلية ثقافة العديد من خطوط الخلايا البطانية ونماذج لحاجز الدم في الدماغ82،،من8384. وتشمل فحوصات الشائعة المستخدمة مع هذه النماذج، الهجرة فحوصات97،98و فحوصات السلامة وسمية99، وتولد الأوعية فحوصات98.

الشعيرات الدموية في الدماغ معزولة تسمح بتوصيف دقيق للتعبير البروتين ونشاط ووصف الإشارات مسارات في حاجز الدم في الدماغ. وهذا يرجع، جزئيا، إلى محتوى الشعيرات الدموية في الدماغ، وهو فقط ما يقرب من 1% (v/v). وهكذا، باستخدام هوموجيناتي الدماغ كله أو شرائح المخ كبديل لتنقية خلايا بطانية الشعرية الأكثر احتمالاً سيؤدي فقيرة الإشارات إلى الضجيج نسبة24. وبالإضافة إلى ذلك، بعد عزلة، الشعيرات الدموية في الدماغ قابلة للتطبيق على الأقل 6 ح (معطيات غير منشورة من الماوس وفار)، الذي يسمح لدراسات تبين مسارات إشارات محددة. من المستحسن أن تدرج مجموعة مراقبة من إعداد نفسه.

نماذج تمثيلية ومتعدية الجنسيات من حاجز الدم – المخ، مثل نموذج الشعرية معزولة تمت مناقشتها في هذا التقرير، هناك حاجة لدراسة وظيفة الحاجز في الصحة والمرض. نقدم هنا بروتوكولا للحصول على دماغ الإنسان معزولة الشعيرات الدموية في الغلة الجيدة والجودة العالية والتي يمكن أن تكون بمثابة نموذج السابقين فيفو من حاجز الدم في الدماغ. الشعيرات الدموية المعزولة الاحتفاظ بالهيكل الأصلي ووظيفة، مما يسمح باستخدام لهم لعدد من العزلة بعد الجزيئي، والكيمياء الحيوية، وفحوصات الفسيولوجية. وينبغي توخي الحذر عند التعامل مع الأنسجة البشرية العينات، يفضل أن تكون في BSL 2 أو أعلى الإعداد.

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

الكتاب ليس لها علاقة بالكشف عن.

Acknowledgments

ونحن نشكر ونقر الدكتور بيتر نيلسون وأندرسون سونيا في بنك أنسجة الدماغ ADC المملكة المتحدة لتزويد الدماغ البشري جميع عينات الأنسجة (منح عدد من المعاهد الوطنية للصحة: P30 AG028383 من المعهد الوطني للشيخوخة). ونحن نشكر هازارد مات وتوم دولان، خدمات تكنولوجيا المعلومات، والتكنولوجيا الأكاديمية ومشاركة أعضاء هيئة التدريس، جامعة كنتاكي لمساعدة رسومية. وأيد هذا المشروع بمنحه 1R01NS079507 عدد من المعهد الوطني للاضطرابات العصبية والسكتة الدماغية (لباء) وحسب 1R01AG039621 رقم منحة من المعهد الوطني للشيخوخة (إلى A.M.S.H).. المحتوى هي المسؤولة الوحيدة عن المؤلفين ولا تمثل بالضرورة وجهات النظر الرسمية للمعهد الوطني للاضطرابات العصبية والسكتة الدماغية أو المعهد الوطني المعني بالشيخوخة. الكتاب يعلن لا تضارب المصالح المالية.

Materials

Name Company Catalog Number Comments
Personal Protective Equipment (PPE)
Diamond Grip Plus Latex Gloves, Microflex Medium VWR, Radnor, PA, USA 32916-636 PPE
Disposable Protective Labcoats VWR, Radnor, PA, USA 470146-214 PPE; due to the nature of the human source material, the use of a disposable lab coat is recommended
Face Shield, disposable Thermo Fisher Scientific, Pittsburgh, PA, USA 19460102 PPE; due to the nature of the human source material, the use of a disposable face shield is recommended
Safety Materials
Clavies High-Temperature Autoclave Bags 8 x 12 Thermo Fisher Scientific, Pittsburgh, PA, USA 01-815-6
Versi Dry Bench Paper 18" x 20" Thermo Fisher Scientific, Pittsburgh, PA, USA 14-206-32 to cover working areas
VWR Sharps Container Systems Thermo Fisher Scientific, Pittsburgh, PA, USA 75800-272 for used scalpels
Bleach 8.2% Clorox Germicidal 64 oz. UK Supply Center, Lexington, KY, USA 323775
Equipment
4 °C Refrigerator Thermo Fisher Scientific, Pittsburgh, PA, USA 13-986-148
Accume BASIC AB15 pH Meter Thermo Fisher Scientific, Pittsburgh, PA, USA AB15
Heidolph RZR 2102 Control Heidolph, Elk Grove Village, IL, USA 501-21024-01-3
Sorvall LEGEND XTR Centrifuge Thermo Fisher Scientific, Pittsburgh, PA, USA 75004521
Leica L2 Dissecting Microscope Leica Microsystems Inc, Buffalo Grove IL, USA used to remove meninges
POLYTRON PT2500 Homogenizer Kinematica AG, Luzern, Switzerland 9158168
Scale P-403 Denver Instrument, Bohemia, NY, USA 0191392
Standard mini Stir Thermo Fisher Scientific, Pittsburgh, PA, USA 1151050
Thermo-Flasks Liquid Nitrogen Dewar Thermal Scientific, Mansfiled, TX, USA 11-670-4C used to freeze the tissue?
Voyager Pro Analytical Balance OHAUS, Parsippany, NJ, USA VP214CN
ZEISS Axiovert Microcope Carl Zeiss, Inc Thornwood, NY, USA used to check isolated capillaries
Tools and Glassware
Finnpipette II Pipette 1-5 mL Thermo Fisher Scientific, Pittsburgh, PA, USA 21377823T1 wash capillaries off filter
Finnpipette II Pipette 100-1,000 µL Thermo Fisher Scientific, Pittsburgh, PA, USA 21377821T1 resuspend pellet in BSA
Pipet Boy Integra, Hudson, NH, USA 739658
50 mL Falcon tubes 25/rack - 500/cs VWR, Radnor, PA, USA 21008-951
EISCO Scalpel Blades Thermo Fisher Scientific, Pittsburgh, PA, USA S95938C to mince brain tissue
PARAFILM VWR, Radnor, PA, USA 52858-000 to cover beaker and volumetric flask
Thermo Scientific Finntip Pipet Tips 5 mL Thermo Fisher Scientific, Pittsburgh, PA, USA 21-377-304 to wash capillaries off filter
60 mL syringe with Luer-Lok Thermo Fisher Scientific, Pittsburgh, PA, USA BD309653 used with connector ring to filter capillaries
Scalpel Handle #4 Fine Science Tools, Foster City, CA, USA 10060-13 used for mincing
Dumont Forceps #5 Fine Science Tools, Foster City, CA, USA 11251-10 used to remove meninges
Potter-Elvehjem Tissue Grinder Thomas Scientific, Swedesboro, NJ, USA 3431E25 50 mL volume, clearance: 150-230 μm
Dounce Homogenizer VWR, Radnor PA USA 62400-642 15 mL volume, clearance: 80-130 μm
Spectra/Mesh Woven Filters (300 µm) Spectrum Laboratories, Rancho Dominguez, CA, USA 146424 Used to filter capillary suspension to remove any meninges that may be left
pluriStrainers (pore size: 30 µm) pluriSelect Life Science, Leipzig, Germany 43-50030-03
Connector Ring pluriSelect Life Science, Leipzig, Germany 41-50000-03 reuse multiple time
1 L Volumetric Flask for preparation of Isolation Buffer
1 L Beaker for preparation of 1% BSA
Stir Bar for preparation of 1% BSA and Ficoll®
Schott Bottle (60 mL) for preparation of Ficoll®
Ice Bucket to keep everything cold
100 mm Petri dish for mincing of brain tissue
Tissue Culture Cell Scraper VWR, Radnor, PA, USA 89260-222 to remove supernatant after centrifugation
Chemicals
BSA Fraction V, A-9647 Sigma-Aldrich, St. Louis, MO, USA A9647-500g prepare in DPBS with Ca2+ & Mg2+ the day before. Avoid bubbles during preparation. Store in the refrigerator. Slowly stir for 10 min before use.
DPBS with Ca2+ & Mg2+ Hyclone SH30264.FS DPBS - part of the Isolation Buffer
Ficoll PM400 Sigma-Aldrich, St. Louis, MO, USA F4375 Exact measurement is important here. Weigh out in bottle with stir bar. Shake vigurously after adding DPBS. Keep in the fridge O/N. It will be clear in the morning. Stir gently for 10-15 min before use. Keep on ice until use.
Glucose (D-(+) Dextrose) Sigma-Aldrich, St. Louis, MO, USA G7528 Glucose (D-(+) Dextrose) Concentration: 5 mM
Sodium Hydroxide Standard Solution Sigma-Aldrich, St. Louis, MO, USA 71474 to adjust pH of the DPBS
Sodium Pyruvate Sigma-Aldrich, St. Louis, MO, USA P2256 Concentration: 1 mM

DOWNLOAD MATERIALS LIST

References

  1. Aronica, E., et al. Expression and cellular distribution of multidrug resistance-related proteins in the hippocampus of patients with mesial temporal lobe epilepsy. Epilepsia. 45 (5), 441-451 (2004).
  2. Hartz, A. M., et al. Amyloid-β contributes to blood-brain barrier leakage in transgenic human amyloid precursor protein mice and in humans with cerebral amyloid angiopathy. Stroke. 43 (2), 514-523 (2012).
  3. Hartz, A. M., et al. Aβ40 Reduces P-Glycoprotein at the Blood-Brain Barrier through the Ubiquitin-Proteasome Pathway. J Neurosci. 36 (6), 1930-1941 (2016).
  4. Kassner, A., Merali, Z. Assessment of Blood-Brain Barrier Disruption in Stroke. Stroke. 46 (11), 3310-3315 (2015).
  5. Lauritzen, F., et al. Monocarboxylate transporter 1 is deficient on microvessels in the human epileptogenic hippocampus. Neurobiol Dis. 41 (2), 577-584 (2011).
  6. Tishler, D. M., et al. MDR1 gene expression in brain of patients with medically intractable epilepsy. Epilepsia. 36 (1), 1-6 (1995).
  7. van Assema, D. M., et al. Blood-brain barrier P-glycoprotein function in Alzheimer's disease. Brain. 135 (Pt 1), 181-189 (2012).
  8. Oberoi, R. K., et al. Strategies to improve delivery of anticancer drugs across the blood-brain barrier to treat glioblastoma. Neuro Oncol. 18 (1), 27-36 (2016).
  9. Parrish, K. E., et al. Efflux transporters at the blood-brain barrier limit delivery and efficacy of cyclin-dependent kinase 4/6 inhibitor palbociclib (PD-0332991) in an orthotopic brain tumor model. J Pharmacol Exp Ther. 355 (2), 264-271 (2015).
  10. Thomas, A. A., Brennan, C. W., DeAngelis, L. M., Omuro, A. M. Emerging therapies for glioblastoma. JAMA Neurol. 71 (11), 1437-1444 (2014).
  11. Siakotos, A. N., Rouser, G., Fleische, S. Isolation Of Highly Purified Human And Bovine Brain Endothelial Cells And Nuclei And Their Phospholipid Composition. Lipids. 4 (3), 234-239 (1969).
  12. Goldstein, G. W., Wolinsky, J. S., Csejtey, J., Diamond, I. ISOLATION OF METABOLICALLY ACTIVE CAPILLARIES FROM RAT-BRAIN. Journal of Neurochemistry. 25 (5), 715-717 (1975).
  13. Joo, F., Karnushina, I. A procedure for the isolation of capillaries from rat brain. Cytobios. 8 (29), 41-48 (1973).
  14. Joo, F., Rakonczay, Z., Wollemann, M. Camp-Mediated Regulation Of Permeability In Brain Capillaries. Experientia. 31 (5), 582-584 (1975).
  15. Panula, P., Joo, F., Rechardt, L. EVIDENCE FOR PRESENCE OF VIABLE ENDOTHELIAL CELLS IN CULTURES DERIVED FROM DISSOCIATED RAT-BRAIN. Experientia. 34 (1), 95-97 (1978).
  16. Pardridge, W. M., Eisenberg, J., Yamada, T. Rapid Sequestration And Degradation Of Somatostatin Analogs By Isolated Brain Microvessels. Journal of Neurochemistry. 44 (4), 1178-1184 (1985).
  17. Dallaire, L., Tremblay, L., Beliveau, R. Purification And Characterization Of Metabolically Active Capillaries Of The Blood-Brain-Barrier. Biochemical Journal. 276, 745-752 (1991).
  18. Miller, D. S., et al. Xenobiotic transport across isolated brain microvessels studied by confocal microscopy. Molecular Pharmacology. 58 (6), 1357-1367 (2000).
  19. Bauer, B., Hartz, A. M., Fricker, G., Miller, D. S. Pregnane X receptor up-regulation of P-glycoprotein expression and transport function at the blood-brain barrier. Mol Pharmacol. 66 (3), 413-419 (2004).
  20. Bauer, B., Hartz, A. M., Miller, D. S. Tumor necrosis factor alpha and endothelin-1 increase P-glycoprotein expression and transport activity at the blood-brain barrier. Mol Pharmacol. 71 (3), 667-675 (2007).
  21. Hartz, A. M., Bauer, B., Fricker, G., Miller, D. S. Rapid regulation of P-glycoprotein at the blood-brain barrier by endothelin-1. Mol Pharmacol. 66 (3), 387-394 (2004).
  22. Hartz, A. M., Madole, E. K., Miller, D. S., Bauer, B. Estrogen receptor beta signaling through phosphatase and tensin homolog/phosphoinositide 3-kinase/Akt/glycogen synthase kinase 3 down-regulates blood-brain barrier breast cancer resistance protein. J Pharmacol Exp Ther. 334 (2), 467-476 (2010).
  23. Hartz, A. M., Mahringer, A., Miller, D. S., Bauer, B. 17-β-Estradiol: a powerful modulator of blood-brain barrier BCRP activity. J Cereb Blood Flow Metab. 30 (10), 1742-1755 (2010).
  24. Bauer, B., et al. Coordinated nuclear receptor regulation of the efflux transporter, Mrp2, and the phase-II metabolizing enzyme, GSTpi, at the blood-brain barrier. J Cereb Blood Flow Metab. 28 (6), 1222-1234 (2008).
  25. Bauer, B., et al. In vivo activation of human pregnane X receptor tightens the blood-brain barrier to methadone through P-glycoprotein up-regulation. Mol Pharmacol. 70 (4), 1212-1219 (2006).
  26. Hartz, A. M., Miller, D. S., Bauer, B. Restoring blood-brain barrier P-glycoprotein reduces brain amyloid-beta in a mouse model of Alzheimer's disease. Mol Pharmacol. 77 (5), 715-723 (2010).
  27. Erickson, M. A., Banks, W. A. Blood-brain barrier dysfunction as a cause and consequence of Alzheimer's disease. J Cereb Blood Flow Metab. 33 (10), 1500-1513 (2013).
  28. Marchi, N., et al. Consequences of repeated blood-brain barrier disruption in football players. PLoS One. 8 (3), e56805 (2013).
  29. Rempe, R. G., Hartz, A. M., Bauer, B. Matrix metalloproteinases in the brain and blood-brain barrier: Versatile breakers and makers. J Cereb Blood Flow Metab. 36 (9), 1481-1507 (2016).
  30. van Vliet, E. A., et al. Blood-brain barrier leakage may lead to progression of temporal lobe epilepsy. Brain. 130, 521-534 (2007).
  31. Banks, W. A., et al. Tau Proteins Cross the Blood-Brain Barrier. J Alzheimers Dis. 55 (1), 411-419 (2017).
  32. Chan, G. N., et al. et al. In vivo induction of P-glycoprotein expression at the mouse blood-brain barrier: an intracerebral microdialysis study. J Neurochem. 127 (3), 342-352 (2013).
  33. Mesev, E. V., Miller, D. S., Cannon, R. E. Ceramide 1-Phosphate Increases P-Glycoprotein Transport Activity at the Blood-Brain Barrier via Prostaglandin E2 Signaling. Mol Pharmacol. 91 (4), 373-382 (2017).
  34. Ronaldson, P. T., Demarco, K. M., Sanchez-Covarrubias, L., Solinsky, C. M., Davis, T. P. Transforming growth factor-beta signaling alters substrate permeability and tight junction protein expression at the blood-brain barrier during inflammatory pain. J Cereb Blood Flow Metab. 29 (6), 1084-1098 (2009).
  35. Seelbach, M. J., Brooks, T. A., Egleton, R. D., Davis, T. P. Peripheral inflammatory hyperalgesia modulates morphine delivery to the brain: a role for P-glycoprotein. J Neurochem. 102 (5), 1677-1690 (2007).
  36. Sugiyama, D., et al. Functional characterization of rat brain-specific organic anion transporter (Oatp14) at the blood-brain barrier: high affinity transporter for thyroxine. J Biol Chem. 278 (44), 43489-43495 (2003).
  37. Wang, X., et al. Nrf2 upregulates ATP binding cassette transporter expression and activity at the blood-brain and blood-spinal cord barriers. J Neurosci. 34 (25), 8585-8593 (2014).
  38. Hartz, A. M., et al. P-gp Protein Expression and Transport Activity in Rodent Seizure Models and Human Epilepsy. Mol Pharm. 14 (4), 999-1011 (2017).
  39. Pardridge, W. M., Eisenberg, J., Yamada, T. Rapid sequestration and degradation of somatostatin analogues by isolated brain microvessels. J Neurochem. 44 (4), 1178-1184 (1985).
  40. Goldstein, G. W., Betz, A. L., Bowman, P. D. Use of isolated brain capillaries and cultured endothelial cells to study the blood-brain barrier. Fed Proc. 43 (2), 191-195 (1984).
  41. Pardridge, W. M., Triguero, D., Yang, J., Cancilla, P. A. Comparison of in vitro and in vivo models of drug transcytosis through the blood-brain barrier. J Pharmacol Exp Ther. 253 (2), 884-891 (1990).
  42. Audus, K. L., Bartel, R. L., Hidalgo, I. J., Borchardt, R. T. The use of cultured epithelial and endothelial cells for drug transport and metabolism studies. Pharm Res. 7 (5), 435-451 (1990).
  43. Abbott, N. J., Hughes, C. C., Revest, P. A., Greenwood, J. Development and characterisation of a rat brain capillary endothelial culture: towards an in vitro blood-brain barrier. J Cell Sci. 103 (Pt 1), 23-37 (1992).
  44. Miller, D. S., et al. Xenobiotic transport across isolated brain microvessels studied by confocal microscopy. Mol Pharmacol. 58 (6), 1357-1367 (2000).
  45. Dolgikh, E., et al. QSAR Model of Unbound Brain-to-Plasma Partition Coefficient, Kp,uu,brain: Incorporating P-glycoprotein Efflux as a Variable. J Chem Inf Model. 56 (11), 2225-2233 (2016).
  46. Narayanan, R., Gunturi, S. B. In silico ADME modelling: prediction models for blood-brain barrier permeation using a systematic variable selection method. Bioorg Med Chem. 13 (8), 3017-3028 (2005).
  47. Betz, A. L., Firth, J. A., Goldstein, G. W. Polarity of the blood-brain barrier: distribution of enzymes between the luminal and antiluminal membranes of brain capillary endothelial cells. Brain Res. 192 (1), 17-28 (1980).
  48. Cucullo, L., Hossain, M., Puvenna, V., Marchi, N., Janigro, D. The role of shear stress in Blood-Brain Barrier endothelial physiology. BMC Neurosci. 12, 40 (2011).
  49. He, Y., Yao, Y., Tsirka, S. E., Cao, Y. Cell-culture models of the blood-brain barrier. Stroke. 45 (8), 2514-2526 (2014).
  50. Urich, E., Lazic, S. E., Molnos, J., Wells, I., Freskgård, P. O. Transcriptional profiling of human brain endothelial cells reveals key properties crucial for predictive in vitro blood-brain barrier models. PLoS One. 7 (5), e38149 (2012).
  51. Helms, H. C., et al. In vitro models of the blood-brain barrier: An overview of commonly used brain endothelial cell culture models and guidelines for their use. J Cereb Blood Flow Metab. 36 (5), 862-890 (2016).
  52. Stebbins, M. J., et al. Differentiation and characterization of human pluripotent stem cell-derived brain microvascular endothelial cells. Methods. 101, 93-102 (2016).
  53. Booth, R., Kim, H. Characterization of a microfluidic in vitro model of the blood-brain barrier (µBBB). Lab Chip. 12 (10), 1784-1792 (2012).
  54. Brown, J. A., et al. Recreating blood-brain barrier physiology and structure on chip: A novel neurovascular microfluidic bioreactor. Biomicrofluidics. 9 (5), 054124 (2015).
  55. Griep, L. M., et al. BBB on chip: microfluidic platform to mechanically and biochemically modulate blood-brain barrier function. Biomed Microdevices. 15 (1), 145-150 (2013).
  56. Cucullo, L., Hossain, M., Tierney, W., Janigro, D. A new dynamic in vitro modular capillaries-venules modular system: cerebrovascular physiology in a box. BMC Neurosci. 14, 18 (2013).
  57. Neuhaus, W., et al. A novel flow based hollow-fiber blood-brain barrier in vitro model with immortalised cell line PBMEC/C1-2. J Biotechnol. 125 (1), 127-141 (2006).
  58. Stanness, K. A., et al. A new model of the blood--brain barrier: co-culture of neuronal, endothelial and glial cells under dynamic conditions. Neuroreport. 10 (18), 3725-3731 (1999).
  59. Ghosh, C., et al. Pattern of P450 expression at the human blood-brain barrier: roles of epileptic condition and laminar flow. Epilepsia. 51 (8), 1408-1417 (2010).
  60. Jeynes, B., Provias, J. An investigation into the role of P-glycoprotein in Alzheimer's disease lesion pathogenesis. Neurosci Lett. 487 (3), 389-393 (2011).
  61. Wijesuriya, H. C., Bullock, J. Y., Faull, R. L., Hladky, S. B., Barrand, M. A. ABC efflux transporters in brain vasculature of Alzheimer's subjects. Brain Res. 1358, 228-238 (2010).
  62. Pekcec, A., et al. Targeting prostaglandin E2 EP1 receptors prevents seizure-associated P-glycoprotein up-regulation. J Pharmacol Exp Ther. 330 (3), 939-947 (2009).
  63. Zibell, G., et al. Prevention of seizure-induced up-regulation of endothelial P-glycoprotein by COX-2 inhibition. Neuropharmacology. 56 (5), 849-855 (2009).
  64. Nelson, P. T., et al. Clinicopathologic correlations in a large Alzheimer disease center autopsy cohort: neuritic plaques and neurofibrillary tangles "do count" when staging disease severity. J Neuropathol Exp Neurol. 66 (12), 1136-1146 (2007).
  65. Vaught, J., et al. The ISBER Best Practices: Insight from the Editors of the Third Edition. Biopreserv Biobank. 10 (2), 76-78 (2012).
  66. Gjedde, A., Kuwabara, H., Hakim, A. M. Reduction of functional capillary density in human brain after stroke. J Cereb Blood Flow Metab. 10 (3), 317-326 (1990).
  67. Karbowski, J. Scaling of brain metabolism and blood flow in relation to capillary and neural scaling. PLoS One. 6 (10), e26709 (2011).
  68. Lokkegaard, A., Nyengaard, J. R., West, M. J. Stereological estimates of number and length of capillaries in subdivisions of the human hippocampal region. Hippocampus. 11 (6), 726-740 (2001).
  69. Gerhart, D. Z., Broderius, M. A., Drewes, L. R. Cultured human and canine endothelial cells from brain microvessels. Brain Res Bull. 21 (5), 785-793 (1988).
  70. Tontsch, U., Bauer, H. C. ISOLATION, CHARACTERIZATION, AND LONG-TERM CULTIVATION OF PORCINE AND MURINE CEREBRAL CAPILLARY ENDOTHELIAL-CELLS. Microvascular Research. 37 (2), 148-161 (1989).
  71. Abbott, N. J. Dynamics of CNS barriers: Evolution, differentiation, and modulation. Cellular and Molecular Neurobiology. 25 (1), 5-23 (2005).
  72. Herculano-Houzel, S., Kaas, J. H., de Oliveira-Souza, R. Corticalization of motor control in humans is a consequence of brain scaling in primate evolution. J Comp Neurol. 524 (3), 448-455 (2016).
  73. Pardridge, W. M. Molecular biology of the blood-brain barrier. Mol Biotechnol. 30 (1), 57-70 (2005).
  74. Cirrito, J. R., et al. P-glycoprotein deficiency at the blood-brain barrier increases amyloid-beta deposition in an Alzheimer disease mouse model. J Clin Invest. 115 (11), 3285-3290 (2005).
  75. Rosenberg, G. A., Estrada, E. Y., Dencoff, J. E. Matrix metalloproteinases and TIMPs are associated with blood-brain barrier opening after reperfusion in rat brain. Stroke. 29 (10), 2189-2195 (1998).
  76. van Vliet, E. A., et al. Blood-brain barrier leakage may lead to progression of temporal lobe epilepsy. Brain. 130 (Pt 2), 521-534 (2007).
  77. Kermode, A. G., et al. Breakdown Of The Blood-Brain-Barrier Precedes Symptoms And Other Mri Signs Of New Lesions In Multiple-Sclerosis - Pathogenetic And Clinical Implications. Brain. 113, 1477-1489 (1990).
  78. Shlosberg, D., Benifla, M., Kaufer, D., Friedman, A. Blood-brain barrier breakdown as a therapeutic target in traumatic brain injury. Nat Rev Neurol. 6 (7), 393-403 (2010).
  79. Cecchelli, R., et al. Modelling of the blood-brain barrier in drug discovery and development. Nat Rev Drug Discov. 6 (8), 650-661 (2007).
  80. Wilhelm, I., Fazakas, C., Krizbai, I. A. In vitro models of the blood-brain barrier. Acta Neurobiol Exp (Wars). 71 (1), 113-128 (2011).
  81. Hatherell, K., Couraud, P. O., Romero, I. A., Weksler, B., Pilkington, G. J. Development of a three-dimensional, all-human in vitro model of the blood-brain barrier using mono-, co-, and tri-cultivation Transwell models. J Neurosci Methods. 199 (2), 223-229 (2011).
  82. Rubin, L., et al. A cell culture model of the blood-brain barrier. The Journal of cell biology. 115 (6), 1725-1735 (1991).
  83. Gaillard, P. J., et al. Establishment and functional characterization of an in vitro model of the blood-brain barrier, comprising a co-culture of brain capillary endothelial cells and astrocytes. European journal of pharmaceutical sciences. 12 (3), 215-222 (2001).
  84. Nakagawa, S., et al. A new blood-brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes. Neurochemistry international. 54 (3), 253-263 (2009).
  85. Li, J. Y., Boado, R. J., Pardridge, W. M. Blood-brain barrier genomics. Journal of Cerebral Blood Flow & Metabolism. 21 (1), 61-68 (2001).
  86. Ott, M., Fricker, G., Bauer, B. Pregnane X receptor (PXR) regulates P-glycoprotein at the blood-brain barrier: functional similarities between pig and human PXR. J Pharmacol Exp Ther. 329 (1), 141-149 (2009).
  87. Méresse, S., Delbart, C., Fruchart, J. C., Cecchelli, R. Low-density lipoprotein receptor on endothelium of brain capillaries. Journal of neurochemistry. 53 (2), 340-345 (1989).
  88. Hartz, A. M., Bauer, B., Block, M. L., Hong, J. S., Miller, D. S. Diesel exhaust particles induce oxidative stress, proinflammatory signaling, and P-glycoprotein up-regulation at the blood-brain barrier. FASEB J. 22 (8), 2723-2733 (2008).
  89. Moser, K. V., Reindl, M., Blasig, I., Humpel, C. Brain capillary endothelial cells proliferate in response to NGF, express NGF receptors and secrete NGF after inflammation. Brain research. 1017 (1), 53-60 (2004).
  90. Carrano, A., et al. ATP-binding cassette transporters P-glycoprotein and breast cancer related protein are reduced in capillary cerebral amyloid angiopathy. Neurobiol Aging. 35 (3), 565-575 (2014).
  91. Deane, R., et al. RAGE mediates amyloid-beta peptide transport across the blood-brain barrier and accumulation in brain. Nat Med. 9 (7), 907-913 (2003).
  92. McCaffrey, G., et al. P-glycoprotein trafficking at the blood-brain barrier altered by peripheral inflammatory hyperalgesia. Journal of neurochemistry. 122 (5), 962-975 (2012).
  93. Sanchez del Pino, M. M., Hawkins, R. A., Peterson, D. R. Biochemical discrimination between luminal and abluminal enzyme and transport activities of the blood-brain barrier. J Biol Chem. 270 (25), 14907-14912 (1995).
  94. Agarwal, S., et al. Quantitative proteomics of transporter expression in brain capillary endothelial cells isolated from P-glycoprotein (P-gp), breast cancer resistance protein (Bcrp), and P-gp/Bcrp knockout mice. Drug metabolism and disposition. 40 (6), 1164-1169 (2012).
  95. Kamiie, J., et al. Quantitative atlas of membrane transporter proteins: development and application of a highly sensitive simultaneous LC/MS/MS method combined with novel in-silico peptide selection criteria. Pharmaceutical research. 25 (6), 1469-1483 (2008).
  96. Uchida, Y., et al. Quantitative targeted absolute proteomics of human blood-brain barrier transporters and receptors. Journal of neurochemistry. 117 (2), 333-345 (2011).
  97. Lee, B. -C., Lee, T. -H., Avraham, S., Avraham, H. K. Involvement of the Chemokine Receptor CXCR4 and Its Ligand Stromal Cell-Derived Factor 1α in Breast Cancer Cell Migration Through Human Brain Microvascular Endothelial Cells. Molecular Cancer Research. 2 (6), 327-338 (2004).
  98. Zagzag, D., et al. Hypoxia-inducible factor 1 and VEGF upregulate CXCR4 in glioblastoma: implications for angiogenesis and glioma cell invasion. Lab Invest. 86 (12), 1221-1232 (2006).
  99. Preston, J. E., Hipkiss, A. R., Himsworth, D. T. J., Romero, I. A., Abbott, J. N. Toxic effects of beta-amyloid(25-35) on immortalised rat brain endothelial cell: protection by carnosine, homocarnosine and beta-alanine. Neuroscience Letters. 242 (2), 105-108 (1998).

Tags

علم الأعصاب، 139 قضية، علم الأعصاب، نيوروفاسكولاتوري، حاجز الدم في الدماغ، الشعيرات الدموية في الدماغ، وخلايا بطانية، وأنسجة المخ البشري
عزل من الشعيرات الدموية الدماغية من أنسجة المخ البشري الطازج
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Hartz, A. M. S., Schulz, J. A.,More

Hartz, A. M. S., Schulz, J. A., Sokola, B. S., Edelmann, S. E., Shen, A. N., Rempe, R. G., Zhong, Y., Seblani, N. E., Bauer, B. Isolation of Cerebral Capillaries from Fresh Human Brain Tissue. J. Vis. Exp. (139), e57346, doi:10.3791/57346 (2018).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter