Summary

Kultur og Transfektion af zebrafisk primærelementer

Published: August 17, 2018
doi:

Summary

Vi præsenterer en effektiv og nem at bruge protokol til forberedelse af primære cellekulturer af zebrafisk embryoner til Transfektion og levende celle billedbehandling samt en protokol til at forberede primære celler fra voksne zebrafisk hjernen.

Abstract

Zebrafisk embryoner er gennemsigtige og udvikle hurtigt uden for mor, således giver mulighed for fremragende i vivo billeddannelse af dynamiske biologiske processer i en intakt og udvikle hvirveldyr. Men den detaljerede billeddannelse af morfologier af forskellige celletyper og subcellulært strukturer er begrænset i hele mounts. Derfor, vi etableret en effektiv og nem at bruge protokollen til kultur levende primærelementer fra zebrafisk embryoner og voksent væv.

Kort sagt, er 2 dpf zebrafisk embryoner dechorionated, deyolked, steriliseret, og dissocieres til enkelt celler med collagenase. Efter en filtrering skridt, primærelementer belagt på bunden glasfade og dyrkes i flere dage. Frisk kulturer, så meget som lang sigt differenciated dem, kan bruges til høj opløsning Konfokal billeddiagnostiske undersøgelser. Kulturen indeholder forskellige celletyper, med tværstribede myocytes og neuroner er fremtrædende på poly-L-lysin belægning. Specifikt etiket subcellulært strukturer af fluorescerende markør proteiner etableret vi også en elektroporation protokol, som giver Transfektion af plasmid DNA i forskellige celletyper, herunder neuroner. Således, i overværelse af operatøren definerede stimuli, komplekse celle adfærd og intracellulære dynamikken i primære zebrafisk celler kan vurderes med høj rumlige og tidsmæssige opløsning. Derudover ved hjælp af adult zebrafisk hjerne, vise vi, at den beskrevne dissociation teknik, samt de dyrkningsbaserede rammebetingelser, også arbejde for voksen zebrafisk væv.

Introduction

Zebrafisk (Danio rerio, D. rerio) er en populær model hvirveldyr for talrige områder af grundlæggende og biomedicinsk forskning1. Zebrafisk embryoner udvikler hurtigt ex utero, er gennemsigtige, og pasform under et mikroskop, hvilket giver gode forudsætninger for at studere hvirveldyr udvikling i en levende organisme. På grund af den genetiske sporbarhed af zebrafisk2oprettet mange stabile transgene reporter linjer med celle type-specifikke udtryk for forskellige fluorescerende markører giver mulighed for observation af specifikke cellepopulationer. Zebrafisk samfundet tilbyder en bred vifte af såkaldte Gal4-driver linjer, som bærer en transgen udtrykker den syntetiske Kal4TA4 (eller KalTA3-ækvivalent-GalFF) genet med Gal4-DNA-bindende domæne af gær smeltet til viral transcriptional aktivering domæner under kontrol af celle typespecifikke smagsforstærkere. Disse driver linjerne krydses effektor linjer, som bærer transgener bestående af en defineret opstrøms aktiverende sekvens (UAS) smeltet til en reporter gen. Kal4TA4 protein binder sig til elementet UAS, dermed aktivering celle type-selektiv udtryk for reporter gen3,4. Denne tilgang giver mulighed for meget forskelligartede kombinatorisk undersøgelser af næsten alle tilgængelige enhancer og reporter elementer i dobbelt-transgene dyr.

Men dybdegående live imaging med fokus på individuelle celler eller deres subcellulært indhold er begrænset i et hele og konstant skiftende embryo. For at løse specifikke celle biologiske spørgsmål med højeste opløsning, er brugen af cellekulturer ofte at foretrække. Nogle cellelinjer af zebrafisk eksisterer, men de betragtes som stærkt valgte5,6,7 og deres formering er ofte tidskrævende. Derudover er alle tilgængelige cellelinjer fibroblast afledt, begrænse eksperimenter ved hjælp af cellekultur til én type af celler. Derfor, vi etableret både en effektiv og nem at bruge protokollen for at forberede primærelementer direkte fra zebrafisk embryoner og voksen zebrafisk hjernen, sammen med metoder til at øge levetiden af kulturen og at udvide mangfoldigheden af dyrkede celletyper. Derudover præsenterer vi en procedure for at transfect primære stamceller med udtryk konstruktioner for fluorescerende organelle markører. Således kan cellulære morfologier og subcellulært strukturer analyseres med høj rumlige og tidsmæssige opløsning i forskellige celletyper, som bevarer deres vigtigste funktioner.

Protocol

Alle dyr arbejde beskrevet her er i overensstemmelse med lovbestemmelser (EU-direktiv 2010/63). Vedligeholdelse og håndtering af fisk er blevet godkendt af lokale myndigheder og dyrevelfærd repræsentant af Braunschweig University of Technology og lavere Sachsen statslige kontor for forbrugerbeskyttelse og fødevaresikkerhed (LAVES, Oldenburg, Tyskland; AZ. §4 (02.05) TSchB TU BS). 1. forberedelse af primærelementer fra zebrafisk embryoner Forberedelse af 2 dage post befr…

Representative Results

Figur 1 g viser en overførte lys billede af en typisk kultur fra vildtype embryoner med tværstribede myocytes og klynger af neuron-lignende celler bliver mest rigelige. For at identificere bestemte celletyper mere let, en transgene linje med celle type-specifikke udtryk for en fluorescerende proteiner kan være brugt (figur 1 H). Transfektion af en pCS2 +-baseret plas…

Discussion

Her præsenterer vi to forskellige protokoller til kultur primærelementer fra enten 2 dpf zebrafisk embryoner eller voksen zebrafisk hjernen.

Forberedelse af primære cellekulturer fra 2 dpf zebrafisk er relativt let at udføre for nogen med erfaring i basale celle kultur teknikker. Men for at opnå god og reproducerbare resultater, et tilstrækkeligt antal embryoner som udgangspunkt materiale er afgørende (100 er et minimum). Under en forhøjelse af embryonerne, skal alle mulige kilder til …

Disclosures

The authors have nothing to disclose.

Acknowledgements

Vi takker T. Fritsch, A. Wolf-Asseburg, I. Linde og S.-M. Tokarski for glimrende dyrs pleje og teknisk support. Vi er taknemmelige for alle medlemmer af Köster lab intens og nyttige diskussioner. Vi parlamentsarbejdet finansieringen af Deutsche Forschungsgemeinschaft (KO 1949/5-1) og delstaten Niedersachsen, Niedersächsisches Vorab (VWZN2889).

Materials

Fish lines
AB (wild-type) established by Streisinger and colleagues, available from the Zebrafish International Resource Center (ZIRC)
Tg(ptf1a:eGFP)jh1 stable transgenic line in which the enhancer of the zebrafish gene ptf1a drives expression of the fluorescent protein EGFP (Parsons et al., 2007)
Tg(XITubb:DsRed)zf148 stable transgenic line in which the Xenopus neural-specific beta tubulin promoter drives expression of the fluorescent protein DsRed  (Peri and Nüsslein-Volhard, 2008)
Name Company Catalog Number Comments
Equipment
centrifuge Eppendorf model 5804 R
ChemiDoc MP imaging system BioRad model XRS+, used to acquire black-and-white images of Petri dishes containing 1 da embryos
confocal laser scanning microscope Leica microsystems model SP8, equipped with 28 °C temperature box and a 63 x objective
epifluorescent microscope Leica microsystems model DM5500B, equipped with 28 °C temperature box and a 40 x objective
Gene Pulser Xcell with capacitance extender BioRad 1652661 electroporation device
Horizontal shaker GFL model 3011
incubator for cell culture (28 °C) Memmert model incubator I
incubator for embryos (28 °C) Heraeus type B6120
light microscope Zeiss model TELAVAL 31
micro pipettes Gilson
sterile work bench Bio Base with laminar flow and UV light
tweezers Dumont Style 5, Inox
vertical tube rotator Labinco B.V. model LD-79
Name Company Catalog Number Comments
Software
Image Lab Software BioRad for the ChemiDoc MP imaging system from BioRad
ImageJ National Institutes of Health used for counting 1 dpf embryos by applying the Count particles-tool to the respective black-and-white images; Rasband, W.S., ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, https://imagej.nih.gov/ij/. (1997-2016).
LAS X Leica Microsystems for both confocal and epifluorescent microscopes from Leica Microsystems
Name Company Catalog Number Comments
Plasmids
pCS-DCX-tdTomato Köster Lab # 1599 based on the backbone pCS2+ (Rupp et al., 1994)
pCS-eGFP Köster Lab # 7 based on the backbone pCS2+ (Rupp et al., 1994)
pCS-H2B-mseCFP Köster Lab # 2379 based on the backbone pCS2+ (Rupp et al., 1994)
pCS-mClover Köster Lab # 3865 based on the backbone pCS2+ (Rupp et al., 1994)
pCS-MitoTag-YFP Köster Lab # 2199 based on the backbone pCS2+ (Rupp et al., 1994)
pCS-ss-RFP-KDEL Köster Lab # 4330 based on the backbone pCS2+ (Rupp et al., 1994)
pCS-VAMP1-mCitrine Köster Lab # 2291 based on the backbone pCS2+ (Rupp et al., 1994)
pSK-UAS:mCherry Köster Lab # 1062 based on the pBluescript-backbone of Stratagene
Plasmid numbers refer to the database entries of the Köster lab. Plasmids are available upon request.
Name Company Catalog Number Comments
Plastic and glass ware
BD Falcon Cell Strainer (40 µm) FALCON REF 352340 distributed by BD Bioscience, used as “landing net” to dip deyolked embryos into ethanol and to transfer them quickly to fresh cell culture medium
1.5 mL reaction tubes Sarstedt 72690550
24-well plate Sarstedt 83.3922
50 mL falconic tube Sarstedt 62.547.004
96-well plate Sarstedt 83.3924.005
EasyStrainer (40 µm) Greiner Bio-One 542 040 with venting slots; used to filter cells after collagenase-mediated dissociation
electroporation cuvette (0.4 cm) Kisker 4905022
glass coverslips Heinz Herenz Medizinalbedarf GmbH 1051201
Microscope slides Thermo Fisher Scientific (Menzel Gläser) 631-0845
Neubauer chamber Henneberg-Sander GmbH 9020-01
Pasteur pipettes (plastic; 3 mL) A. Hartenstein PP05
Petri dishes (plastic; diameter 10 cm) Sarstedt 821473 for zebrafish embryos
pipette tips Sarstedt Blue (1000 µl): 70762; Yellow (200 µl): 70760002; White (10 µL): 701116
sterile cell culture dishes (plastic; diameter 3 cm) TPP Techno Plastic Products AG 93040
sterile cell culture dishes (plastic; diameter 6 cm) Sarstedt 72690550
sterile Petri dishes (plastic; diameter 10 cm) Sarstedt 83.3902 for brain dissection
Name Company Catalog Number Comments
Chemicals and Reagents
sodium chloride Roth 0601.1
4 % paraformaldehyde in 1 x PBS Sigma-Aldrich 16005
4',6-diamidino-2-phenylindole (DAPI) Thermo Fisher Scientific D1306
calcium nitrate tetrahydrate Sigma-Aldrich C1396
ethanol p.a. 100% Sigma-Aldrich 46139
goat α-mouse IgG (Fc specific) FITC conjugated Thermo Fisher Scientific 31547
HEPES Roth 9105.4
high vacuum grease DOW CORNING 3826-50 silicon grease used for self-made glass bottom dishes
magnesium sulfate heptahydrate Merck 105886
methylene blue Serva 29198.01
Monoclonal Anti-Tubulin, Acetylated antibody Sigma-Aldrich T6793
Aqua-Poly/Mount (mounting medium) Polyscience 18606
poly-L-lysine Biochrom L 7240
potasssion chloride Merck 104938
Skim milk Roth 68514-61-4
Texas Red-X Phalloidin Thermo Fisher Scientific T7471
Tricaine Sigma-Aldrich E10521 Synonym: Ethyl 3-aminobenzoate methanesulfonate
Triton X-100 BioRad 1610407
Trypan Blue Gibco by Life Technologies 15250061
Name Company Catalog Number Comments
Enzymes
collagenase (Type 2) Thermo Fisher Scientific 17101015 dissolve powder in cell culture medium (8 mg/mL) and sterile-filter the solution, store aliquots at -20 °C
pronase (from Streptomyces griseus) Roche 11459643001 distributed by Sigma-Aldrich, dissolve in 30% Danieau (10 mg/mL) and store aliquots at -20 °C
Name Company Catalog Number Comments
Medium and solutions for cell culture
1 x PBS (Dulbecco's Phosphate Buffered Saline) Gibco by Life Technologies 14190-169 distributed by Thermo Fisher Scientific
CO2-independent medium Gibco by Life Technologies 18045054 distributed by Thermo Fisher Scientific
filtrated bovine serum (FBS) PAN-Biotech individual batch
glutamine 100 x Gibco by Life Technologies 25030081 distributed by Thermo Fisher Scientific
Leibovitz's L-15 medium Gibco by Life Technologies 11415049 distributed by Thermo Fisher Scientific
PenStrep (10,000 units/mL) Gibco by Life Technologies 15140148 distributed by Thermo Fisher Scientific

References

  1. Ablain, J., Zon, L. I. Of fish and men: using zebrafish to fight human diseases. Trends in Cell Biology. 23, 584-586 (2013).
  2. Sassen, W. A., Köster, R. A molecular toolbox for genetic manipulation of zebrafish. Advances in Genomics and Genetics. , 151 (2015).
  3. Scheer, N., Campos-Ortega, J. A. Use of the Gal4-UAS technique for targeted gene expression in the zebrafish. Mechanisms of Development. 80, 153-158 (1999).
  4. Köster, R. W., Fraser, S. E. Tracing transgene expression in living zebrafish embryos. Developmental Biology. 233, 329-346 (2001).
  5. Driever, W., Rangini, Z. Characterization of a cell line derived from zebrafish (Brachydanio rerio) embryos. In Vitro Cellular & Developmental Biology – Animal. 29A, 749-754 (1993).
  6. Badakov, R., Jaźwińska, A. Efficient transfection of primary zebrafish fibroblasts by nucleofection. Cytotechnology. 51, 105-110 (2006).
  7. Senghaas, N., Köster, R. W. Culturing and transfecting zebrafish PAC2 fibroblast cells. Cold Spring Harbor Protocols. , (2009).
  8. Westerfield, M. . The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio). , (2007).
  9. Basic methods in cellular and molecular biology. Using a hemacytometer to count cells. Journal of Visualized Experiments Available from: https://www.jove.com/science-education/5048/using-a-hemacytometer-to-count-cells (2017)
  10. Rupp, R. A., Snider, L., Weintraub, H. Xenopus embryos regulate the nuclear localization of XMyoD. Genes & Development. 8, 1311-1323 (1994).
  11. Piperno, G., Fuller, M. T. Monoclonal antibodies specific for an acetylated form of alpha-tubulin recognize the antigen in cilia and flagella from a variety of organisms. Journal of Cell Biology. 101 (6), 2085-2094 (1985).
  12. Barden, J. A., Miki, M., Hambly, B. D., Dos Remedios, C. G. Localization of the phalloidin and nucleotide-binding sites on actin. European Journal of Biochemistry. 162 (3), 583-588 (1987).
  13. Kapuscinski, J. DAPI: a DNA-specific fluorescent probe. Biotechnic & Histochemistry. 70 (5), 220-233 (1995).
  14. Gupta, T., Mullins, M. C. Dissection of organs from the adult zebrafish. Journal of Visualized Experiments. 37, E1717 (2010).
  15. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W., Prasher, D. C. Green fluorescent protein as a marker for gene expression. Science. 263, 802-805 (1994).
  16. Stornaiuolo, M. KDEL and KKXX retrieval signals appended to the same reporter protein determine different trafficking between endoplasmic reticulum, intermediate compartment, and Golgi complex. Molecular Biology of the Cell. 14, 889-902 (2003).
  17. Lithgow, T. Targeting of proteins to mitochondria. FEBS Letters. 476, 22-26 (2000).
  18. Nagai, T., Ibata, K., Park, E. S., Kubota, M., Mikoshiba, K., Miyawaki, A. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nature Biotechnology. 20, 87-90 (2002).
  19. Sassen, W. A., Lehne, F., Russo, G., Wargenau, S., Dübel, S., Köster, R. W. Embryonic zebrafish primary cell culture for transfection and live cellular and subcellular imaging. Developmental Biology. 430, 18-31 (2017).
  20. Horesh, D., et al. Doublecortin, a stabilizer of microtubules. Human Molecular Genetics. 8, 1599-1610 (1999).
  21. Shaner, N. C., Campbell, R. E., Steinbach, P. A., Giepmans, B. N. G., Palmer, A. E., Tsien, R. Y. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nature Biotechnology. 22, 1567-1572 (2004).
  22. Distel, M., Hocking, J. C., Volkmann, K., Köster, R. W. The centrosome neither persistently leads migration nor determines the site of axonogenesis in migrating neurons in vivo. Journal of Cell Biology. 191, 875-890 (2010).
  23. Matsuda, T., Miyawaki, A., Nagai, T. Direct measurement of protein dynamics inside cells using a rationally designed photoconvertible protein. Nature Methods. 5, 339-345 (2008).
  24. Archer, B. T., Ozçelik, T., Jahn, R., Francke, U., Südhof, T. C. Structures and chromosomal localizations of two human genes encoding synaptobrevins 1 and 2. Journal of Biological Chemistry. 265, 17267-17273 (1990).
  25. Griesbeck, O., Baird, G. S., Campbell, R. E., Zacharias, D. A., Tsien, R. Y. Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications. Journal of Biological Chemistry. 276, 29188-29194 (2001).
  26. Shaner, N. C., et al. A bright monomeric green fluorescent protein derived from Branchiostoma lanceolatum. Nature Methods. 10, 407-409 (2013).
  27. Campbell, R. E., et al. A monomeric red fluorescent protein. Procedings of the National Academy of Sciences of the United States of America. 99, 7877-7882 (2002).
  28. Peri, F., Nüsslein-Volhard, C. Live imaging of neuronal degradation by microglia reveals a role for v0-ATPase a1 in phagosomal fusion in vivo. Cell. 133, 916-927 (2008).
  29. Godinho, L., et al. Targeting of amacrine cell neurites to appropriate synaptic laminae in the developing zebrafish retina. Development. 132, 5069-5079 (2005).
  30. Jusuf, P. R., Harris, W. A. Ptf1a is expressed transiently in all types of amacrine cells in the embryonic zebrafish retina. Neural Development. 4, 34 (2009).
  31. Kani, S., et al. Proneural gene-linked neurogenesis in zebrafish cerebellum. Developmental Biology. 343, 1-17 (2010).
  32. Distel, M., Wullimann, M. F., Köster, R. W. Optimized Gal4 genetics for permanent gene expression mapping in zebrafish. Procedings of the National Academy of Sciences of the United States of America. 106, 13365-13370 (2009).
  33. Choorapoikayil, S., Overvoorde, J., den Hertog, J. Deriving cell lines from zebrafish embryos and tumors. Zebrafish. 10, 316-332 (2013).

Play Video

Cite This Article
Russo, G., Lehne, F., Pose Méndez, S. M., Dübel, S., Köster, R. W., Sassen, W. A. Culture and Transfection of Zebrafish Primary Cells. J. Vis. Exp. (138), e57872, doi:10.3791/57872 (2018).

View Video