Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Engineering

改良された3Dプリンターを用いた歪み測定装置の製造

Published: January 30, 2020 doi: 10.3791/60177

Summary

改良された3Dプリンターを用いて製造された増幅機構とポリジメチルシロキサン顕微鏡からなる歪み測定センサを紹介します。

Abstract

従来の歪み測定センサーは、電化が必要で、電磁干渉を受けやすい。従来の歪みゲージ動作でアナログ電気信号の変動を解決するために、新しい歪み測定方法が紹介されています。この方法では、機構のポインタ変位の変化を増幅して歪みの変化を表示する写真技術を用いる。焦点距離7.16mmの視覚ポリジメチルシロキサン(PDMS)レンズをスマートフォンカメラに加え、顕微鏡として働くレンズ群を生成して画像をキャプチャしました。それは、5.74 mmの同等の焦点距離を有し、アクリロニトリルブタジエンスチレン(ABS)とナイロンアンプは、センサ性能に異なる材料の影響をテストするために使用しました。アンプとPDMSレンズの生産は、改良された3Dプリント技術に基づいています。得られたデータを有限要素解析(FEA)の結果と比較し、その有効性を検証した。ABSアンプの感度は36.03±1.34μm/μmで、ナイロン増幅器の感度は36.55±0.53με/μmであった。

Introduction

光だが強い材料を得ることは、現代の産業において特に重要である。材料の特性は、使用中の応力、圧力、トーション、曲げ振動を1,2で受けた場合に影響を受けますそのため、材料のひずみ測定は、その耐久性を分析し、使用法をトラブルシューティングする上で重要です。このような測定により、エンジニアは材料の耐久性を分析し、生産上の問題をトラブルシューティングすることができます。業界で最も一般的な歪み測定方法は、歪みセンサ3を使用しています。従来のフォイルセンサは、低コストで信頼性の高い4で広く使用されています。電気信号の変化を測定し、それらを異なる出力信号5,6に変換します。しかし、この方法では、測定対象物の歪みプロファイルの詳細が省け、アナログ信号による振動電磁干渉によるノイズの影響を受けやすくなります。正確で再現性が高く、容易な材料ひずみ測定方法の開発は、エンジニアリングにおいて重要です。したがって、他の方法が研究されている。

近年、ナノ材料は研究者から多くの関心を集めています。小物の歪みを測定するために、オスボーンら7,8は電子後方散乱(EBSD)を用いて3Dナノ材料の歪みを測定する方法を提案した。Lina et al.9は分子動力学を用いてグラフェンの層間摩擦歪工学を調査した。レイリー後方散乱分光法(RBS)を用いた分散光ファイバ歪み測定は、その高い空間分解能および感度10による光デバイスの評価や故障検出に広く用いられている。グレーチング光ファイバ(FBG)11,12分散歪みセンサは、温度および歪みに対する感度の高精度歪み測定13に広く使用されています。樹脂注入後の硬化による歪みの変化を監視するために、Sanchez et al.14はエポキシ炭素繊維板に光ファイバーセンサーを埋め込み、完全な歪みプロセスを測定した。微差干渉コントラスト(DIC)は、フィールド変形15、16、17の強力な測定方法であり、18同様に広く使用されている。収集した画像における測定された表面グレイレベルの変化を比較することにより、変形を解析し、歪みを計算する。Zhangら19は、従来のDICから進化する強化粒子およびDIC画像の導入に依存する方法を提案した。フォーゲルと Lee20は、自動 2 ビュー方式を使用してひずみ値を計算しました。近年、粒子強化複合材料における微細構造観察と歪み測定を同時に実現しました。従来の歪みセンサは、一方向にのみ歪みを効果的に測定します。Zymelka et al.21は、センサ抵抗の変化を検出することによって従来の歪みゲージ法を改善する全方向性柔軟な歪みセンサを提案した。また、生物または化学物質を用いて歪みを測定することもできる。例えば、イオン伝導性ヒドロゲルは、その良好な引張特性および高感度22、23による歪み/触覚センサに対する効果的な代替手段である。グラフェンとその複合材料は、優れた機械的特性を有し、良好な圧電抵抗率24、25、26と共に高いキャリア移動性を提供する。その結果、グラフェンベースの歪みセンサは、電子皮膚健康監視、ウェアラブルエレクトロニクス、および他の分野27、28で広く使用されている。

本研究では、ポリジメチルシロキサン(PDMS)顕微鏡と増幅系を用いた概念ひずみ測定を行う。それはワイヤーまたは電気接続を必要としないので、デバイスは従来のひずみゲージとは異なります。また、変位は直接観察することができる。増幅機構は、テスト対象物上の任意の位置に配置することができ、測定の再現性を大幅に向上させます。本研究では、3Dプリンティング技術によりセンサと歪みアンプを作りました。我々は最初に我々の要件のためのその効率を高めるために3Dプリンタを改善しました。球状押し出し装置は金属およびプラスチックノズルの転換を完了するためにスライスソフトウェアによって制御される従来の単一材料の押出機を置き換えるように設計されていた。対応する成形プラットフォームを変更し、変位検出装置(増幅器)と読み取り装置(PDMS顕微鏡)を一体化した。

Subscription Required. Please recommend JoVE to your librarian.

Protocol

1. 増幅機構の組み立て

  1. 1に示すように、改良された3Dプリンタ、歪みゲージインジケータ、駆動装置、支持フレーム、アルミバー、PDMSレンズ、スマートフォン、重み、印刷増幅器(補足図1)、および歪みゲージを含む実験用プラットフォームを構築する。
  2. プリンタの各層の高さをナイロンの場合は 0.05 mm、ABS の場合は 0.2 mm に設定します。ナイロンの場合はノズルの温度を220°C、ABSの場合は100°Cに設定します。最後に、印刷速度をナイロンの場合は 2,000 mm/分、ABS の場合は 3,500 mm/分に設定します。
  3. 図 2に示すように、金属ノズルが低温プラットフォームに向くように球状押し出しヘッドの向きを調整し、輪郭を印刷して正常な押し出しを行います。
  4. ナイロンとABSをコラムに掛けます。フロントエンドは、金属ノズルで溶融する印刷コイル容器に入る必要があります。

2. PDMS顕微鏡の組み立て

  1. 磁気スターラーを使用して、PDMS前駆体と硬化剤を混合し、10:1の重量比を得ます。
  2. 40分間脱ガッサーに混合物を入れて気泡を除去し、球状押出ヘッドのPDMS容器に脱気を入れた混合物を注ぎます。
  3. プラスチックノズルが高温プラットフォームに面するように球面押出ヘッドとプラットフォームを回転させます。
  4. プラスチックノズルの増分を50 μLに設定します。ピペット装置の底端を、ノズル回転とステッパモーターをZ軸に使用して、金型から20mm29離れた位置に配置します。
  5. 高温のプラットフォームを加熱するためにホットプレートをオンにします。プラットホームの温度は非接触赤外線の温度計によって制御される。
    注:この研究では、140°C、160°C、180°C、200°C、220°C、および240°Cの温度をテストしました。
  6. PDMSのレンズを印刷するためにPDMSの容器を絞る。
  7. PDMSレンズを室温まで冷却し、ゴム製ピンセットで取り外します。
  8. 3次元形状アナライザを使用して、接触角、曲率半径、液滴径など、レンズの幾何学的パラメータを決定します。

3. 制御およびテストグループの負荷試験のためのひずみ測定

  1. 片持梁ビームとしてアルミニウム製のバー6063 T83を使用してください。片持梁ビームの長さ、幅、厚さは、それぞれ380 mm x 51 mm x 3.8 mm にする必要があります。ボルトとナットで操作テーブルに一端を固定します。
  2. 中央に十字を描き、片持ち梁の自由な端から160mmを描きます。
  3. 片持ち梁の酸化層を除去するには、貼り付ける前に、その表面を細かいサンドペーパーで磨きます。研削方向は、ひずみゲージのワイヤグリッドの方向から約45°でなければなりません。アセトンに浸したコットンウールを使用して、片持ち梁の表面と歪みゲージペーストの表面を拭きます。
  4. 駆動装置とひずみゲージインジケータを接続します。電源を入れます。歪み変化を測定するために、固定端のアルミニウムバーの中心表面に取り付けられた歪みゲージを使用します。
  5. 標準重量をカンチレバー梁の自由端に固定し、集中力入力を制御します。四半期ブリッジ接続方式で従来のひずみゲージインジケータを使用してデータを読み取ります。
  6. ひずみゲージをABSアンプとナイロンアンプと同じ場所に交換してください。
  7. 焦点距離29mmの8メガピクセルセンサーでPDMSレンズをスマートフォンカメラに取り付け、鮮明な画像が得られるまでカメラの焦点距離を調整します。PDMS顕微鏡を使用してポインタの変位を読み取ります。
  8. ステップ 3.5 と 3.6 を繰り返し、荷重を毎回 1 N、2 N、3 N、4 N、5 N に設定します。

4. 有限要素解析

  1. ひずみ測定用のナイロンおよびABS部品の3D有限要素モデルを確立します(使用するソフトウェアの材料表を参照)。片持梁ビームと増幅機構をソフトウェアのマテリアル ライブラリにインポートし、配置位置をシミュレートします。
  2. カンチレバービームの作用下で増幅機構ポインタの機械的特性を解析します。
  3. 細かい要素サイズの四面体要素を使用して、3D ジオメトリ モデルで使用するメッシュを生成します。屈曲ヒンジ、特にポインタと他のボディとの間のヒンジをリファインします。
    注:アルミニウム、ナイロン、およびABSに使用される弾性のヤング係数はそれぞれ69 GPa、2 GPaおよび2.3 GPaであった。アルミニウム、ナイロン、ABSに使用されるポアソン比はそれぞれ0.33、0.44、0.394でした。
  4. 片持梁梁の自由端の中心に 1 N の集中力を適用します。2 N、3 N、4 N、および 5 N と繰り返します。

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

プラットフォーム温度が上昇すると、液滴径と曲率半径が減少し、接触角が大きくなった(図3)。したがって、PDMS の焦点距離が増加しました。しかし、220°Cを超えるプラットフォーム温度では、液滴に非常に短い硬化時間が認められ、平面凸状にまで伸びることができませんでした。これは、スマートフォンのカメラに付着する場合の低い接続領域に起因することができます。したがって、全ての試験では220°Cで形成された軟レンズのみが拡大鏡として使用された。PDMSレンズの焦点距離は、140m-1の光学パワーで 7.16 mm であった。液滴径は2.831mm、円錐角は最大46.68°で、約0.40の開口(NA)が20倍の倍率に近い。レンズ群の焦点距離は、f1 ×f2/(f1 + f2 - s)、f1はPDMSレンズの焦点距離、f2はカメラレンズの焦点距離、sはカメラレンズの焦点距離で計算できます。s=0と仮定すると、PDMS顕微鏡の有効な集焦点距離は5.74mmであった。

制御群と試験群との較正は、K = ε/δ l pで表される測定感度Kを用いて行い、εはひずみインジケーターとΔlpによって得られたひずみであるポインタの出力である。図4AはナイロンのFEAシミュレーションと実験的変位測定の比較を示す。実験およびFEAの斜面は0.027-0.097(2.74%-9.36%)から変化した。図 4B は、ABS の勾配の 0.026 と 0.07 (3.85% および 9.94%) の勾配の間の最小差と最大の不一致を示しています。図 5は、ナイロンと ABS のKを示しています。この研究では、Kナイロン= 36.55 ± 0.53 μm、KABS = 36.03 ± 1.34 με/μmであることがわかりました。

Figure 1
図1:改良された3Dプリンター、ひずみゲージインジケータ、駆動装置、サポートフレーム、アルミバー、PDMSレンズ、スマートフォン、重量、印刷アンプ、および歪みゲージを含む実験的なテストセットアップ。この図の大きなバージョンを表示するには、ここをクリックしてください。

Figure 2
図2:二相固液3Dプリンタの詳細この図の大きなバージョンを表示するには、ここをクリックしてください。

Figure 3
図3:異なる温度でのPDMSレンズの液滴直径、曲率半径、および接触角。この図の大きなバージョンを表示するには、ここをクリックしてください。

Figure 4
図4:ナイロンとABSのポインタの変位と異なる集中力との関係。改良された3Dプリンタの同じパラメータで、5つのナイロンアンプ(a-e)と5つのABSアンプ(a-e)を印刷しました。各グループのテストを10回繰り返した。この図の大きなバージョンを表示するには、ここをクリックしてください。

Figure 5
図5:ナイロンとABSの変位とひずみの相関文字 a- e は、各材料の 5 つのサンプルを表します。ナイロン及びABSの感度Kは、5つの斜面を平均したものである。この図の大きなバージョンを表示するには、ここをクリックしてください。

Subscription Required. Please recommend JoVE to your librarian.

Discussion

出力変位は、片持梁ビームの自由端に集中した力とともに直線的に進化し、FEA シミュレーションと一致していました。アンプの感度は、ナイロンの場合は36.55±0.53με/μm、ABSの場合は36.03±1.34με/μmでした。安定した感度により、3Dプリンティングを用いた高精度センサの迅速な試作の実現可能性と有効性が確認されました。アンプは感度が高く、電磁干渉が発生しなくて良かった。また、シンプルな構造、少量、軽量化を行いました。印刷プロセスでは、層の厚さ、ノズルの直径、供給速度などの複数の変数に基づいて、異なる材料を設定する必要があります。特定の値は、異なるプリンター パラメーターと組み合わせる必要があり、デバッグ手順を繰り返した後に決定されます。この柔軟な製造方法により、実際の作業条件に応じて材料とサイズを瞬時に変更できます。これにより、電気絶縁を追加して防爆を行うことで、性能を向上させることができます。小型化、カスタマイズ生産、高精度変位センサの使用を可能にします。

5.74mmのマクロショットを得るために、レンズ群はPDMSレンズとスマートフォンカメラで構成されていました。接触面径、曲率半径、接触角など、PDMSレンズ形成の光学的品質に影響を与える基本パラメータは、製造プラットフォームの温度と一定のドロップ高さ。温度はホットプレートと非接触赤外線温度計によって正確に制御されました。溶液容積はプラスチックノズルを通して1滴あたり50 μLであった。PDMSレンズが密着して、結合時間とシャープネスを高めるために、カメラをアルコールで拭いてほこりなどの不純物を除去する必要があった。使用する機器のパラメータとソリューションを調整することで、さまざまな分野での各種非接触マイクロ測定に適合させることができます。

センサの急速な製造は、球状押出ヘッドの2キャビティ構造と、二相固液材料の1マシン形成を用いて達成した。印刷コイル容器を使用して固体線を導入し、金属ノズルの熱溶融により増幅器を印刷した。PDMS容器は柔らかい材料で作られ、混合PDMSの解決を含んでいた。溶液はプラスチックノズルから正確に絞り出された。エレクトロニクス、バイオ医薬品、エネルギー、防衛分野など、様々な分野での構造微小球材料の製造にも応用できます。

この研究は、従来の複雑な歪みゲージ歪みゲージブリッジ試験方法を置き換えることができるアンプ、PDMSレンズ、スマートフォンを備えたリアルタイム歪み測定システムを実証しました。さらに、高精度、低コスト、および迅速な反復生産を備えた二相固液3Dプリンタが示されています。固形印刷時には、ナイロン層の厚さを0.05mmに設定し、ノズル温度は220°C、印刷速度は2,000mm/分とした。ABS層の厚さは0.2mm、ノズル温度は100°C、印刷速度は3,500mm/分であった。印刷パラメータは、最高の印刷性能を得るためには、固有の材料の融解速度、温度、粘弾性と組み合わせる必要があります。プリンター層の精度、フィード範囲、および印刷速度も考慮する必要があります。液体印刷の間、PDMSは前駆体の溶液および硬化剤の10:1の重量比を有し、吊り下げの高さは20のmmに固定され、レンズの成形率を60秒間制御した。高温プラットフォームはガラス製で、その温度はホットプレートと非接触赤外線温度計によって制御されました。レンズの幾何学的パラメータは、試験した表面温度(140°C、160°C、180°C、200°C、220°C、240°C)によって大きく変化しました。50 μLの溶液で220°Cで成形されたPDMSレンズの光学特性は、設計された測定システムにおいて最良の結果を生み出しました。溶液比、体積、成形温度、吊り下げ高さを調整することで、光学特性やサイズの異なる個別化レンズを製作することが可能です。この方法で測定できる微細構造変形に関する幅広い用途が増加するにバインドされています。

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

著者らは相反する利益を宣言していない。

Acknowledgments

この研究は、中国国立科学財団(グラントNo.51805009)によって財政的に支援されました。

Materials

Name Company Catalog Number Comments
ABS Hengli dejian plastic electrical products factory Used for printing 1.75 mm diameter wire for amplifying mechanism
Aluminum 6063 T83 bar The length, width and thickness of cantilever beam are 380 mm, 51 mm, and 3.8 mm.
ANSYS ANSYS ANSYS 14.5
CURA Ultimaker Cura 3.0 Slicing softare,using with the improved 3D printer
Curing agent Dow Corning PDMS and curing agent are mixed with the weight ratio of 10:1
Driving device Xinmingtian E00
Improved 3D printer and accessories Made by myself. The rotary spherical lifting platform is adopted. The spherical lifting platform is equipped with a nozzle and a pipette, which can be switched and printed freely. With a rotary printing platform, the platform temperature can be freely controlled.
iPhone 6 Apple MG4A2CH/A 8-megapixel sensor and the equivalent focus distance is 29mm
Magenetic stirrer SCILOGEX MS-H280-Pro
Nylon Hengli dejian plastic electrical products factory Used for printing 1.75 mm diameter wire for amplifying mechanism
PDMS Dow Corning SYLGARDDC184 After the viscous mixture is heated and hardened, it can be combined with the lens amplification device of the mobile phone for image acquisition.
Shape analyzer Gltech SURFIEW 4000
Solidworks Dassault Systems Solidworks 2017 Assist to modelling
VISHAY strain gauge Vishay Used to measure the strain produced in the experiment.
VISHAY strain gauge indicator Vishay Strain data acquisition.

DOWNLOAD MATERIALS LIST

References

  1. Laramore, D., Walter, W., Bahadori, A. Design of a micro-nuclear-mechanical system for strain measurement. Radiation Physics and Chemistry. 155 (8), 209-212 (2019).
  2. Hu, D., Song, B., Dang, L., Zhang, Z. Effect of strain rate on mechanical properties of the bamboo material under quasi-static and dynamic loading condition. Composite Structures. 200 (4), 635-646 (2018).
  3. Mattana, G., Briand, D. Recent advances in printed sensors on foil. Materials Today. 19 (2), 88-99 (2016).
  4. Laramore, D., McNeil, W., Bahadori, A. A. Design of a micro-nuclear-mechanical system for strain measurement. Radiation Physics and Chemistry. 281, 258-263 (2018).
  5. Enser, H., Sell, J. K., Hilber, W., Jakoby, B. Printed strain sensors in organic coatings: In depth analysis of sensor signal effects. Sensors and Actuators A: Physical. 19 (2), 88-99 (2016).
  6. Kelb, C., Reithmeier, E., Roth, B. Foil-integrated 2D Optical Strain Sensors. Procedia Technology. 15, 710-715 (2014).
  7. Osborn, W., Friedman, L. H., Vaudin, M. Strain measurement of 3D structured nanodevices by EBSD. Ultramicroscopy. 184, 88 (2018).
  8. Liu, F., Guo, C., Xin, R., Wu, G., Liu, Q. Evaluation of the reliability of twin variant analysis in Mg alloys by in situ EBSD technique. Journal of Magnesium and Alloys. 150 (4), 184-198 (2019).
  9. Lin, X., Zhang, H., Guo, Z., Chang, T. Strain engineering of friction between graphene layers. Journal of Tribology International. 131 (8), 686-693 (2019).
  10. Shingo, O. Long-range measurement of Rayleigh scatter signature beyond laser coherence length based on coherent optical frequency domain reflectometry. Journal of Optics Express. 24 (17), 19651 (2016).
  11. Davis, C., Tejedor, S., Grabovac, I., Kopczyk, J., Nuyens, T. High-Strain Fiber Bragg Gratings for Structural Fatigue Testing of Military Aircraft. Journal of Photonic Sensors. 2 (3), 215-224 (2012).
  12. Peng, J., Jia, S., Jin, Y., Xu, S., Xu, Z. Design and investigation of a sensitivity-enhanced fiber Bragg Grating sensor for micro-strain measurement. Journal of Sensors and Actuators. 285, 437-447 (2019).
  13. Hong, C. Y., Zhang, Y. F., Yang, Y. Y., Yuan, Y. An FBG based displacement transducer for small soil deformation measurement. Sensors and Actuators A: Physical. 286, 35-42 (2019).
  14. Sánchez, D. Z., Gresil, M., Soutis, C. Distributed internal strain measurement during composite manufacturing using optical fibre sensors. Composites Science and Technology. 120, 49-57 (2015).
  15. Castillo, D. R., Allen, T., Henry, R., Giffith, M., Ingham, J. Digital image correlation (DIC) for measurement of strains and displacements in coarse, low volume-fraction FRP composites used in civil infrastructure. Composite Structures. 212 (10), 43-57 (2019).
  16. Badadani, V., Sriranga, T. S., Srivatsa, S. R. Analysis of Uncertainty in Digital Image Correlation Technique for Strain Measurement. Materials Today: Proceedings. 5 (10), 20912-20919 (2018).
  17. Gao, C., Zhang, Z., Amirmaleki, M., Tam, J., Sun, Y. Local strain mapping of GO nanosheets under in situ TEM tensile testing. Applied Materials Today. 14, 102-107 (2018).
  18. Chine, C. H., Su, T. H., Huang, C. J., Chao, Y. J. Application of digital image correlation (DIC) to sloshing liquids. Optics and Lasers in Engineering. 115, 42-52 (2019).
  19. Zhang, F., Chen, Z., Zhong, S., Chen, H., Wang, H. W. Strain measurement of particle reinforced composites at microscale: an approach towards concurrent characterization of strain and microstructure. Micron. , (2019).
  20. Vogel, J. H., Lee, D. An automated two-view method for determining strain distributions on deformed surfaces. Journal of Materials Shaping Technology. 6 (4), 205-216 (1988).
  21. Zymelka, D., Yamashita, T., Takamatsu, S., Kobayashi, T. Thin-film flexible sensor for omnidirectional strain measurements. Journal of Sensors and Actuators. 263, 391-397 (2017).
  22. Li, R., Zhang, K., Cai, L., Chen, G., He, M. Highly stretchable ionic conducting hydrogels for strain/tactile sensors. Polymer. 167 (12), 154-158 (2019).
  23. Liu, H., Macqueen, L. A., Usprech, J. F., Maleki, H. Microdevice arrays with strain sensors for 3D mechanical stimulation and monitoring of engineered tissues. Biomaterials. 172, 30-40 (2018).
  24. Bolotin, K. I., Sikes, K. J., Jiang, Z., Stormer, H. L. Ultrahigh electron mobility in suspended Graphene. Solid State Communications. 146 (9-10), 351-355 (2008).
  25. Smith, A. D., et al. Electromechanical piezoresistive sensing in suspended graphene membranes. Nano Letters. 13 (7), 3237-3242 (2013).
  26. Zhao, J., Wang, G., Yang, R., Lu, X., Cheng, M. Tunable piezoresistivity of nanographene films for strain sensing. ACS Nano. 9 (2), 1622-1629 (2015).
  27. Bae, S. H., Lee, Y. B., Sharma, B. K. Graphene-based transparent strain sensor. Carbon. 51, 236-242 (2013).
  28. Boland, C. S., Khan, U. Sensitive electromechanical sensors using viscoelastic graphene polymer nanocomposites. Science. 354 (6317), 1257-1260 (2016).
  29. Sung, Y. L., Jeang, J., Lee, C. H., Shih, W. C. Fabricating optical lenses by inkjet printing and heat-assisted in situ curing of polydimethylsiloxane for smartphone microscopy. Journal of Biomedical Optics. 20 (4), 047005 (2015).

Tags

工学、課題155、顕微鏡観察、増幅器、PDMSレンズ、ひずみ測定、3Dプリント技術、球面押出ヘッド
改良された3Dプリンターを用いた歪み測定装置の製造
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Du, Q., Wu, W., Xiang, H. Production More

Du, Q., Wu, W., Xiang, H. Production of a Strain-Measuring Device with an Improved 3D Printer. J. Vis. Exp. (155), e60177, doi:10.3791/60177 (2020).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter