Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Immunology and Infection

使用抗生素耐药性平台进行抗生素脱除

Published: October 17, 2019 doi: 10.3791/60536

Summary

我们描述了一个平台,它利用异源性抗生素耐药大肠杆菌库来消除抗生素。细菌或真菌产生的抗生素的特性可以通过表达其各自抗药性基因的大肠杆菌的生长来推断出来。该平台经济高效且具有时间效率。

Abstract

从天然产物提取物中寻找新的抗生素的主要挑战之一是重新发现常见化合物。为了应对这一挑战,对感兴趣的样品进行脱体,即识别已知化合物的过程。脱体方法,如分析分离,然后是质谱法,既费时又耗费资源。为了改进脱复制过程,我们开发了抗生素耐药性平台(ARP)。ARP 是一个包含大约 100 个抗生素耐药性基因的库,这些基因已单独克隆到大肠杆菌中。这种菌株收集有许多应用,包括一种经济高效且方便的抗生素脱压方法。这个过程涉及在含有固体介质的矩形培养皿表面发酵产生抗生素的微生物,从而允许二次代谢物通过培养基分泌和扩散。经过6天的发酵期,微生物生物量被去除,并在培养皿中加入薄琼脂覆盖层,以形成光滑的表面,使大肠杆菌指标菌株生长。然后,我们收集的 ARP 菌株固定在含抗生素的培养皿表面。该板是下一个孵育过夜,以允许大肠杆菌生长在覆盖的表面。只有含有对特定抗生素(或类)的耐药性的菌株才能在此表面上生长,从而能够快速识别所生产的化合物。该方法已成功用于识别已知抗生素的生产商,并作为识别产生新化合物的人的手段。

Introduction

自1928年发现青霉素以来,来自环境微生物的天然产物已被证明是抗菌化合物1的丰富来源。大约80%的天然产品抗生素来自链霉菌属和其他活动性霉菌的细菌,而其余20%是由真菌物种1产生的。临床中使用的一些最常见的抗生素支架,如β-乳糖、四环素、里法霉素和氨基糖苷,最初是从微生物2中分离出来的。然而,由于耐多药细菌(MDR)的上升,我们目前的抗生素小组在治疗3、4方面效果已经降低。这些病原体包括"ESKAPE"病原体(即,耐万古霉素肠球菌和β-乳酸葡萄球菌、肺炎克列比氏菌、假单抗、辛托杆菌肠杆菌),这是一些主要公共卫生当局认为与最高风险相关的细菌的子集,如世界卫生组织3、4、5。这些MDR病原体的出现和全球传播导致对新型抗生素的不断需求3,4,5。令人遗憾的是,过去二十年已表明,从微生物来源发现新型抗生素越来越困难。目前的药物发现方法包括生物活性化合物的高通量筛选,包括天然产物提取物库,允许在给定时间测试数千种提取物2。然而,一旦检测到抗菌活性,下一步是分析粗提取物的含量,以确定活性成分,并消除那些含有已知或冗余化合物7,8。这个过程,称为去复制,对于预防和/或显著减少重新发现已知抗生素7,9的时间至关重要。虽然天然产品药物发现的必要步骤,脱复制是出了名的费力和资源密集型10。

自从Beutler等人首次发明"去复制"一词以来,已经做出了广泛的努力,为快速识别已知的抗生素11、12制定创新战略。今天,用于脱模最常见的工具包括分析色谱系统,如高性能液相色谱、质谱法和基于核磁共振的检测方法11、13。不幸的是,这些方法中的每一个都需要使用昂贵的分析设备和复杂的数据解释。

为了开发一种无需专用设备即可快速执行的去复制方法,我们建立了抗生素耐药性平台(ARP)10。ARP 可用于发现抗生素佐剂、分析新的抗生素化合物对抗已知的耐药性机制,以及从动效细菌和其他微生物中提取的已知抗生素的去复制。在这里,我们专注于它在抗生素脱位中的应用。ARP利用一个各源性大肠杆菌菌株库,表达个体抗药性基因,这些基因对最常见的重新发现的抗生素14、15有效。当大肠杆菌库在二次代谢物产生生物的存在下生长时,该化合物的特性可以通过表达其相关抗性基因10大肠杆菌菌株的生长来推导。当ARP首次被报告时,该库由>40个基因组成,对16种抗生素类具有抗药性。原始的去复制模板被设计为包含每个抗生素类的抗药性基因子集,以在脱模过程中提供有关抗生素亚类的信息。今天,ARP由>90个基因组成,这些基因对18种抗生素具有抗药性。利用我们广泛的抗药性基因集合,开发了一个二次脱体模板,被称为最小抗生素耐药性平台(MARP)。创建此模板是为了消除基因冗余,并简单地提供有关一般抗生素类别的信息,该类别与复制代谢物相关。此外,MARP模板具有野生型和大肠杆菌BW25113(大肠杆菌BW25113+巴B+tolC)的超渗透/排泄缺陷菌株,与ARP的原始化身相比,后者仅利用超渗透应变。这种独特的方面在脱体过程中产生额外的表型,表明化合物能够穿过革兰氏阴性细菌的外膜。在这里,我们描述了在取消ARP和/或MARP的复制时应遵循的稳健协议,重点介绍了要遵循的最关键步骤,并讨论了各种可能的结果。

Subscription Required. Please recommend JoVE to your librarian.

Protocol

1. 准备大肠杆菌库甘油库存(来自Agar Slants)

  1. 将ARP/MARP E.大肠杆菌菌株从乳化汤(LB)琼脂带到含有LB琼脂和适当可选择的标记的培养皿上(表1)。
  2. 通过接种含有与单个菌落的适当可选择标记的3 mL的LB,为每个大肠杆菌菌株制备培养物。在 37°C 下通过曝气(250 rpm)在 37°C 下生长过夜。
  3. 将800μL的培养液和200μL的无菌80%甘油结合在1.8 mL冷冻液中。通过反转管3⁄4次混合,并储存在-80°C。

2. ARP/MARP 冷冻库存库板准备

  1. 将 ARP/MARP 菌株从第 1 节中准备的甘油库存中分到一组新的培养皿中,这些菜肴包含 LB 琼脂和适当的可选标记。在37°C下生长过夜。
  2. 使用无菌技术,移液器 500 μL 的阳离子调节穆勒欣顿汤 (MHB) 从无菌储液罐到无菌 96 深孔板的每个孔。
  3. 在步骤 2.1 中准备板时,使用施用器杆根据 ARP/MARP 图(补充图 1补充图 2)为 96 深孔板接种。确保在每个井中添加适当的可选标记。在深井板表面放置透气密封膜,并在 37°C (250 rpm) 下孵育过夜。
  4. 参考 ARP/MARP 地图,确保没有受污染的油井。如果受污染,请重复上述步骤。使用多通道移管器,将深井板的每个井中 100 μL 转移到无菌的 96 孔圆底板。重复此步骤以创建多个冻结库存库板。
    注:最好一次至少准备 5 个库板,以防止在冻结库存库板污染时重复步骤 2.1_2.4。
  5. 通过将 100 μL 的无菌 50% 甘油移入每个井中,完成使 ARP/MARP 冷冻库存库板,并通过轻轻上下移液进行混合。
  6. 用无菌铝密封罩板,确保每个孔都单独密封。
  7. 对板进行编号,并只指定一个冷冻库存库板,用于在给定时间为新模板接种。在冻结库存库板污染时,保留剩余部分作为备份。
  8. 将板盖放在铝密封顶部,并储存在 -80°C。

3. 种子培养和脱复制板准备

  1. 使用施用棒,在含有一个无菌玻璃珠(以分解菌丝)的试管中接种3 mL的链霉素抗生素培养基(SAM)(或其他适当的被检测生物的培养基)与正在检测的菌株进行接种。去复制。对于链球菌,从菌群表面轻轻刮擦孢子。
  2. 使用相同的木制施用棒,在含有Bennett的琼脂的培养皿上进行无菌控制。
  3. 在30°C下孵育种子培养,曝气6天(250rpm),在30°C孵育无菌控制板6天。
    注:有关 SAM 和 Bennett 的媒体配方,请参阅表 2。上述说明适用于大多数行为性。改变生长介质,作为其他细菌和真菌所必需的。
  4. 通过将 23 mL 的暖贝内特琼脂吸入血清学移液器,在矩形培养皿(材料表)表面均匀分配 20 mL,将介质的剩余部分留在移液器中以防止气泡的形成。
    注:确保用于浇注板的表面是水平的,并在琼脂冷却过多之前执行此步骤;在下一阶段,平面对于库固定至关重要。
  5. 轻轻旋转板,直到介质覆盖板的所有区域,并且在琼脂完全设置之前不要干扰它。
  6. 使用矩形培养皿盖作为跟踪模板,使该片适合脱模板的表面,从而制备硝化纤维素膜片(材料表)。切下床单,用无菌袋高压灭菌。
    注:这种膜允许生物体在其表面孢子,而次生代谢物可以排泄到下面的介质中。一旦生长,膜被移除,为脱复制提供一个干净的表面。膜纸在 Bennett 的琼脂表面贴合越紧密,脱体效果越干净。
  7. 检查无菌控制板,确保孵育 6 天后无污染物。如果无污染,将矩形培养皿和移液器 200 μL 的种子培养物的盖子取到 Bennett 的琼脂上。
  8. 使用无菌棉签均匀地将培养均匀地分布到整个盘子的表面。
  9. 将步骤 3.6 中制备的硝基纤维素膜放在培养皿表面的培养膜上。首先将膜的下边缘与培养皿的下边缘对齐,然后缓慢地将膜从下边缘涂抹到板的上边缘。
  10. 使用无菌棉签来平滑膜-琼脂界面之间可能形成的任何气泡,确保膜与琼脂齐平。
  11. 将盖子放回长方形培养皿上,倒置放在密封的塑料袋中。在30°C孵育6天。

4. 去复制板 MHB 覆盖和 ARP/MARP 库板准备

  1. 6天后,从30°C培养箱中取出脱体板。使用无菌钳子(用70%乙醇彻底灭菌或喷洒),小心地从Bennett的琼脂表面去除硝化纤维素膜。
    注:此步骤将去除在膜表面生长的疏水孢子和菌丝,为脱压提供干净的表面,促进步骤4.2。
  2. 如步骤 3.4 所述,确保工作表面水平,并使用血清移液器吸出 23 mL 的暖阳离子调整 MHB agar。通过在脱压板表面均匀分配 20 mL,将介质的剩余部分留在移液器中,以防止气泡形成,从而创建覆盖。
  3. 轻轻旋转板,直到介质覆盖所有区域,并且在琼脂完全设置之前不要干扰它。冷却和凝固后,将去复制板返回到密封的塑料袋中,并将其倒置在 4°C 过夜。
    注:此步骤允许将次级代谢物从发酵的 Bennett 的介质扩散到 MHB agar 覆盖层中。如果硝基纤维素膜未正确制备,板边缘周围会有孢子生长,具有疏水性,可排斥MHB agar。不要将覆盖物倒在这些孢子的顶部,因为它可能导致覆盖物的污染。
  4. 在浇注叠加的同一天,通过将 100 μL 的阳离子调整 MHB 移入 96 孔板的每个孔中,接种新的 ARP/MARP 模板。
    注:为了减少脱复制期间传播污染的机会,请使用单个 ARP/MARP 库板仅去复制 2⁄3 脱复制板。因此,根据将去复制的菌株数量,接种足够的 96 孔 ARP/MARP 板。
  5. 从 -80 °C 冰柜中取出冷冻库存 ARP/MARP 库板。在铝密封开始在其底面形成之前,拆下铝密封,从而减少污染库板中邻近孔的机会。
  6. 使用无菌 96 孔固定工具(或其他形式的接种设备),从冷冻库存 ARP/MARP 库板中小心固定,并接种含有 MHB 的新鲜 MHB 96 孔板。为了在脱复制期间尽量减少污染,请准备所需的 ARP 或 MARP 库板,以便每个库板仅复制 2⁄3 个脱复制板。在各板之间消毒固定工具。
  7. 完成后,在冷冻模板上放置新的无菌铝密封,并将其放回 -80°C 冷冻室。将接种的 96 孔板放在密封塑料袋内,在 37°C 下孵育,曝气(250 rpm)18 小时。
    注:在确保不存在污染后,可以从此步骤中制备新的冷冻库存盘。如步骤 2.5 所述,在 -80°C 储存之前,将甘油添加到板中。

5. 使用 ARP/MARP 进行复制

  1. 从培养箱中取出 ARP/MARP 模板,确保不存在污染物。始终使用新鲜准备且不直接从冷冻库存中复制的模板。
  2. 从 4°C 中取出脱模板,并允许平衡到室温。如果有冷凝,打开盖子,让干燥在无菌的环境中。
  3. 使用无菌固定工具(或其他接种设备),从 ARP/MARP 库板将引脚固定在脱压板的 MHB agar 覆盖层上。小心不要刺穿琼脂。在每次脱布板的接种之间对固定工具进行消毒。
  4. 将模板固定在脱模板表面后,让模板接种干燥3~5分钟。将接种的脱模板倒置在密封的塑料袋中,在37°C下孵育过夜。
  5. 通过将去复制板上的生长情况与对应于 ARP/MARP 映射的井进行比较(表 3表 4 ),分析第二天的去复制结果。

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

当使用ARP和/或MARP对一组感兴趣的抗生素产生菌株进行去复制时,得出了以下结果。

图 1中描述了 ARP/MARP 去复制工作流的关系图,库板映射如图 1 和补充图 2所示。图2显示了一个积极的脱布结果,其中环境提取物WAC 8921被确定为氯霉素生产商。图 3显示完全缺乏 ARP 增长,这表明存在未知抗生素或 ARP/MARP 库盘中未计入的较不常见的抗生素。图 4显示了 MARP 特有的生长模式,因为它既利用了野生型大肠杆菌BW25113 和高渗透和排泄物缺陷突变大肠杆菌BW25113 +bamB+tolC。这一结果表明,存在一种具有抗菌活性的化合物,无法超过完整的外膜。图 5显示了大肠杆菌生长模式,表明固定工具的灭菌不当,图6显示了 ARP/MARP 冷冻库存库板污染的示例。图 7演示了在脱脂过程中刺穿琼脂覆盖时会发生什么情况。最后,图 8显示了在去复制过程中可能发生的 MHB 覆盖相关污染。

Figure 1
图 1:去复制过程的示意图。要去复制的产生菌株被条纹到一个长方形的培养皿上,作为草坪,将硝化纤维素膜放在顶部。然后,该板孵育6天,其中生产菌株相关的生物量生长在膜表面,而产生的二次代谢物分泌到培养皿培养基中。经过6天的发酵期后,膜被去除,MHB覆盖物被添加到含抗生素的介质表面,为固定提供光滑的表面。根据 ARP/MARP 地图以 96 孔板格式排列的 ARP/MARP大肠杆菌库,然后固定在覆盖层表面。在37°C下孵育托盘过夜后,表达特定抗性基因的大肠杆菌菌株的生长表明所生产的化合物的特性。请点击此处查看此图的较大版本。

Figure 2
图2:已知抗生素的去复制。使用 ARP 模板对生成应变 WAC 8921 进行了去复制。大肠杆菌BW25113 +bamB+tolC pGDP1: MHB agar 覆盖表面的CAT表明 WAC 8921 是氯霉素生产商。请点击此处查看此图的较大版本。

Figure 3
图3:未知抗生素的去复制。生产应变 WAC 9941 使用 ARP 模板进行复制。在矩形培养皿表面发现大肠杆菌库缺乏生长,表明WAC 9441正在产生一种未知的抗菌化合物,或者一种稀有的抗生素,在ARP中未计入。请点击此处查看此图的较大版本。

Figure 4
图4:识别不能穿过完整外膜的抗菌化合物。使用 MARP 模板对生产应变 WAC 4178 进行了去复制。大肠杆菌BW25113菌株能够在二级代谢物培养基的表面上生长,而大肠杆菌BW25113+ bamB+tolC的所有菌株不能生长。 这表明WAC 4178正在产生一种抗菌化合物,不能穿过完整的外膜。请点击此处查看此图的较大版本。

Figure 5
图5:非无菌固定工具造成的污染。生产应变 WAC 7094 使用 ARP 模板进行复制。在未指定大肠杆菌菌株的地区存在大肠杆菌库生长,这表明用于接种矩形培养皿的 MHB Agar 覆盖物的固定工具未正确消毒。这导致未知的大肠杆菌菌株在覆盖层上转移。请点击此处查看此图的较大版本。

Figure 6
图6:受污染冷冻库存ARP/MARP模板造成的污染。使用 ARP 模板对生成应变 WAC 3683 进行了去复制。三个不同的大肠杆菌菌落生长在矩形培养皿表面:两个对应于大肠杆菌BW25113+bamB+tolC表达STAT,一种链球菌素抗酸酶,另一个对应于大肠杆菌BW25113 =巴B+tolC表达VIM-2s,一种β-乳酸抗酶。由于缺乏复制的BlaVIM2ss菌群生长,除了这两种抗生素类别之间缺乏已知的交叉耐药性外,可以假定大肠杆菌+巴姆B以外的菌株tolC pGDP1: blaVIM2s在各自的冷冻库板中生长良好。请点击此处查看此图的较大版本。

Figure 7
图7:穿孔MHB Agar覆盖。使用 ARP 模板对生成应变 WAC 5106 进行了去复制。该菌株被发现是链霉素的生产者, 如大肠杆菌BW25113 +bamB+tolC pGDP3:aph(6)-Ia 的生长所示。在沿板周长的 MHB agar 覆盖物表面可以看到穿刺孔。虽然这不会影响去复制结果,但会使数据很难一眼解释。请点击此处查看此图的较大版本。

Figure 8
图8:MHB Agar覆盖物的污染。受污染的 MHB Agar 在覆盖层表面产生不规则的生长模式,在 37°C 孵育板过夜后变得可见。虽然大肠杆菌的生长可能仍然可见通过污染,建议重复实验之前推断数据从板。请点击此处查看此图的较大版本。

质 粒 可选择标记
pGDP1 卡那霉素 50 μg/mL
pGDP2
pGDP3 安比林 100 μg/mL
pGDP4
没有 -

表1:pGDP质粒系列中使用的可选标记。将ARP/MARP E.大肠杆菌菌株分到含有适当可选择标记的LB琼脂培养皿上,每个质粒的浓度正确。

媒体 成分
山 姆 葡萄糖 15克
大豆肽 15克
Nacl 5克
酵母提取物 1 克
CaCO3 1 克
甘油 2.5 mL
ddH2O 到 1 L
贝内特的 马铃薯淀粉 10克
卡萨米诺酸 2 克
酵母提取物 1.8 克
查佩克矿物混合物 2 mL
阿加(可选) 15克
ddH2O 到 1 L
查佩克矿物混合物 氯化钾 10克
MgSO4±7H2O 10克
纳诺3 12克
FeSO4+7H2O 0.2 克
浓缩 HCl 200 μL
ddH2O 到 100 mL

表2:SAM和Bennett介质的食谱,以及查佩克矿物混合物。在高压灭菌前,将 SAM 和 Bennett 的 PH 6.8 调整,并过滤对查佩克矿物混合物进行灭菌。

抗生素类 抗生素 电阻基因 大肠杆菌应变 井位置
氨基 糖苷 类 链霉素 aph(3'')-Ia [巴姆B_tolC BW25113 B3, G10
2- 脱氧乙胺 rmtB [巴姆B_tolC BW25113 F3,C10
阿普拉霉素 apmA [巴姆B_tolC BW25113 C5, F8
斯佩诺霉素 阿普(9)-Ia [巴姆B_tolC BW25113 B5, G8
β-乳糖 青霉素 NDM-1 [巴姆B_tolC BW25113 B4, G9
头 孢 菌 素
卡巴佩纳姆
林科米德斯 林科米德斯 ermC [巴姆B_tolC BW25113 D4, E9
宏利德 宏利德 ermC
B 型链球菌 B 型链球菌 ermC
A 型链球菌 A 型链球菌 瓦特D [巴姆B_tolC BW25113 C3,F10
链球菌素 链球菌素 统计 [巴姆B_tolC BW25113 D3, E10
四环素 四环素 泰特(A) [巴姆B_tolC BW25113 D5, E8
氯霉素 氯霉素 [巴姆B_tolC BW25113 E4, D9
福斯福霉素 福斯福霉素 福萨 [巴姆B_tolC BW25113 F6, C7
里法霉素 里法霉素 阿尔 [巴姆B_tolC BW25113 E3, D10
多霉毒素 多霉毒素 MCR-1 野生型 BW25113 C6, F7
阿奇诺霉素 阿奇诺霉素 乌夫拉 [巴姆B_tolC BW25113 F4,C9
侧霉素 阿尔博霉素 fhuB 突变体 [巴姆B_tolC BW25113 C4, F9
图贝克拉蒂诺霉素 维奥霉素 vph [巴姆B_tolC BW25113 F5, C8
不适用 不适用 不适用 野生型 BW25113 C1、C12、F1、F12、E5、D8
不适用 不适用 不适用 [巴姆B_tolC BW25113 A1、A12、B1、B12、D6、D7、E6、E7、G1、G12、H1、H12

表 3:最小 ARP 菌株的井指定表。此表指示根据最小 ARP 库板图,每个最小 ARP 应变的 96 孔板的哪个井。该表还列出了每种基因的抗生素类具有抗药性。请注意,某些基因可能在给定的抗生素类别内对多个抗生素产生耐药性。

抗生素类 抗生素 电阻基因 大肠杆菌应变 井位置
氨基 糖苷 类 链霉素 aph(3'')-Ia [巴姆B_tolC BW25113 B2, G11
阿夫(6)-Ia [巴姆B_tolC BW25113 C6,F7
斯佩诺霉素 阿普(9)-Ia [巴姆B_tolC BW25113 A2, H11
庆大霉素 aac(3)-Ia [巴姆B_tolC BW25113 A3,H10
蚂蚁(2'')-Ia [巴姆B_tolC BW25113 A5, H8
aph(2'')-ID [巴姆B_tolC BW25113 A4, H9
Arma [巴姆B_tolC BW25113 A6, H7
aac(6')-aph(2'')-Ia [巴姆B_tolC BW25113 B5,G8
卡那霉素 阿夫(3')-Ia [巴姆B_tolC BW25113 B4, G9
阿夫(3')-伊拉 [巴姆B_tolC BW25113 B3, G10
海格罗霉素 阿夫(4)-Ia [巴姆B_tolC BW25113 B6,G7
β-乳糖 阿 莫 西林 TEM-1 [巴姆B_tolC BW25113 F6, C7
切夫塔齐迪梅 CTX-M-15 [巴姆B_tolC BW25113 F5, C8
奥克卡西林 OXA-10 [巴姆B_tolC BW25113 G5, B8
OXA-48 [巴姆B_tolC BW25113 H5, A8
梅洛内姆 IMP-7s [巴姆B_tolC BW25113 G4, B9
KPC-2 [巴姆B_tolC BW25113 G6, B7
NDM-1 [巴姆B_tolC BW25113 H6, A7
伊米佩内姆 VIM-2 [巴姆B_tolC BW25113 F4,C9
林科米德斯 林科米德斯 ermC [巴姆B_tolC BW25113 C4, F9
lnu(A) [巴姆B_tolC BW25113 C5, F8
宏利德 宏利德 ermC [巴姆B_tolC BW25113 C4, F9
mphA [巴姆B_tolC BW25113 C3,F10
英里B [巴姆B_tolC BW25113 C2, F11
B 型链球菌 B 型链球菌 ermC [巴姆B_tolC BW25113 C4, F9
Vgb [巴姆B_tolC BW25113 D4, E9
A 型链球菌 A 型链球菌 瓦特D [巴姆B_tolC BW25113 D5, E8
链球菌素 链球菌素 统计 [巴姆B_tolC BW25113 D3, E10
四环素 四环素 泰特(M) [巴姆B_tolC BW25113 E5, D8
氯霉素 氯霉素 [巴姆B_tolC BW25113 E4, D9
福斯福霉素 福斯福霉素 福萨 [巴姆B_tolC BW25113 H4, A9
里法霉素 里法霉素 阿尔 [巴姆B_tolC BW25113 E3, D10
不适用 不适用 不适用 [巴姆B_tolC BW25113 A1、A12、B1、B12、D6、D7、E6、E7、G1、G12、H1、H12

表4:ARP菌株的井指定表。此表指示根据 ARP 库板图可以找到每个 ARP 菌株的 96 孔板的哪个井。该表还列出了每种基因的抗生素类具有抗药性。请注意,某些基因可能在给定的抗生素类别内对多个抗生素产生耐药性。

补充图1:用于原始抗生素耐药性平台(ARP)模板的库板图。使用此格式将各自的大肠杆菌菌株组织在 96 孔板中,以确保包含所有必要的控制和重复项。这个数字已由考克斯等人10修改。请点击此处下载此图。

补充图2:用于最小抗生素耐药性平台(MARP)模板的库板图。使用此格式将各自的大肠杆菌菌株组织在 96 孔板中,以确保包含所有必要的控制和重复项。请点击此处下载此图。

Subscription Required. Please recommend JoVE to your librarian.

Discussion

上述方案可应用于新型抗菌化合物和佐剂的发现,这些化合物和佐剂可与现有抗生素结合使用,以挽救其活性。该平台利用抗药性机制的高基质特异性及其共性抗生素,在粗天然产物提取物中分解化合物。尽管准备脱粒板所需的时间很长(±2周),但脱粒复制过程本身是在一个过夜的潜伏期后完成的,与分离和表征所需的时间相比,这非常迅速。来自原油提取物的化合物。此外,无需昂贵或高度专业化的设备,使该平台易于访问且具有成本效益。

该平台的另一个主要好处是其灵活性。ARP 可以扩展为包含包含更多抗生素类的抗药性基因。这是通过监测文献中出现新的抗性酶,并使用基本的分子克隆技术将基因添加到大肠杆菌库来实现的。此外,脱模模板可根据个人在去复制时想要使用的广或窄范围基板特异性所需的水平进行自定义。大肠杆菌库中的任何基因组合都可用于制造具有不同轮廓的化合物的新型库板。例如,可以开发一种表达大肠杆菌的β-乳糖酶模板,以允许β-乳糖及其不同亚类的高度特异性去复制。

虽然该平台最初设计为在固体介质上复制化合物,但它也在液体介质中工作。当使用已经纯化的化合物时,或者当使用不易或一致地在固体介质中扩散的化合物时,这非常有用。最后,当使用大肠杆菌菌株BW25113和BW25113[bamB]tolC描述该协议时,该平台可与不同大肠杆菌菌株(去复制)表达的电阻基因库一起使用表型可能会有所不同)。最终,抗生素耐药性平台是灵活的,具有许多应用,并且比其他脱位方法具有优势。

为了确保获得可重复和无污染的结果,遵循适当的灭菌和无菌技术至关重要。否则将导致固定工具、库板或脱压板本身受到污染。虽然大肠杆菌库中存在可选择的标记,可以帮助防止细菌缺失标记引起的污染,但它不能防止使用同一标记的菌株交叉污染。为了降低发生这种情况的风险,在从库板固定之前,必须仔细消毒细菌固定工具。在丢弃新模板之前,每个库板的固定次数应最多为 3⁄4 倍。这样可以防止污染在所有脱布板中扩散,如果库板在固定过程中受到污染。此外,在接种脱粒板时不使用抗生素,因此在发酵六天之前,必须非常小心,以防止污染。另一个可能的污染源是脱复制板的 MHB agar 覆盖层。如果覆盖介质受到污染,则只有在37°C的过夜孵育后才会出现生长。叠加污染使得分析覆盖表面大肠杆菌库的生长变得极其困难。为了减少叠加污染的可能性,在浇注覆盖层之前,请新鲜制备 MHB agar。建议在个人对这种方法感到满意之前,应始终以重复或三联形式准备去复制板,这样,如果一个板受到污染,数据仍可以从希望未受污染的板材。

最后,必须指出,ARP/MARP 有局限性。该协议不适用于生产多个生物活性化合物的产生菌株的脱复制。大肠杆菌库中的每个菌株都被设计成表达单个抗性基因。如果一个有机体正在产生两种抗生素,则两种抗药性基因都不会对第二种抗生素产生抗药性,从而导致两种菌株的细胞死亡。因此,当脱复制结果显示存在一种新型抗生素时,必须考虑这种可能性,因为目前的单一结构大肠杆菌库无法检测到多种抗生素的生产。一种可以对付产生不止一种抗生素的菌株去复制的挑战的方法是使用Cox等人10号原始ARP论文中描述的琼脂塞程序。在这种方法中,发酵固体介质的一部分从含有板的抗生素生产商中取出,并放置在指示ARP菌株的草坪上。指示应变可以是 ARP 库中的任何耐药大肠杆菌菌株。然后,使用抑制区将生产菌株的生物活性与ARP菌株和野生型菌株进行比较。与野生型菌株相比,形成缩小大小的抑制区的ARP菌株可以抵抗正在产生的化合物。这种方法已被证明是有效的识别菌株能够产生多种抗生素10。

总之,为了在使用 ARP/MARP 进行去复制时获得最佳结果,建议在重复或三联体中准备去复制板。协议中的其他关键步骤包括从新鲜的库板固定(从未冻结),并在膜去除阶段从生产应变中去除尽可能多的生物量。如果遵循所有必要的步骤,则应在两周的时间内成功消除兴趣的生产应变。

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

作者没有什么可透露的。

Acknowledgments

赖特实验室关于ARP/MARP的研究得到了安大略省研究基金和加拿大卫生研究所赠款(FRN-148463)的支持。我们感谢周苏默协助扩大和组织ARP图书馆。

Materials

Name Company Catalog Number Comments
Agar Bio Shop AGR003.5
AlumaSeal CS Films for cold storage Sigma-Aldrich Z722642-50EA
Ampicillin Sodium Salt Bio Shop AMP201.100
BBL Mueller Hinton II Broth (Cation-Adjusted) Becton Dickinson 212322
BBL Phytone Peptone (Soytone) Becton Dickinson 211906
Calcium Carbonate Bio Shop CAR303.500
Casamino acid Bio Basic 3060
Cotton-Tipped Applicators Fisher Scientific 23-400-101
CryoPure Tube 1.8 mL mix.colour Sarstedt 72.379.992
D-glucose Bio Shop GLU501.5
Disposable Culture Tube, 16 mm x 100 mm Fisher Scientific 14-961-29
Ethyl Alcohol Anhydrous Commercial Alcohols P016EAAN
Glass Beads, Solid Fisher Scientific 11-312C
Glycerol Bio Shop GLY001.4
Hydrochloric Acid Fisher Scientific A144-212
Instant sealing sterilization pouch Fisher Scientific 01-812-54
Iron (II) Sulfate Heptahydrate Sigma-Aldrich F7002-250G
Kanamycin Sulfate Bio Shop KAN201.50
LB Broth Lennox Bio Shop LBL405.500
Magnesium Sulfate Heptahydrate Fisher Scientific M63-500
MF-Millipore Membrane Filter, 0.45 µm pore size Millipore-Sigma HAWP00010 10 FT roll, hydrophillic, white, plain
Microtest Plate 96 well, round base Sarstedt 82.1582.001
New Brunswick Innova 44 Eppendorf M1282-0000
Nunc OmniTray Single-Well Plate Thermo Fisher Scientific 264728 with lid, sterile, non treated
Petri dish 92 mm x 16 mm with cams Sarstedt 82.1473.001
Pinning tools ETH Zurich - Custom order
Potassium Chloride Fisher Scientific P217-500
Potato starch Bulk Barn 279
Sodium Chloride Fisher Scientific BP358-10
Sodium Nitrate Fisher Scientific S343-500
Wood Applicators Dukal Corporation 9000
Yeast Extract Fisher Scientific BP1422-2

DOWNLOAD MATERIALS LIST

References

  1. Lo Grasso, L., Chillura Martino, D., Alduina, R. Production of Antibacterial Compounds from Actinomycetes. actinobacteria. Basics and Biotechnological Applications. Dhanasekaran, D., Jiang, Y. , IntechOpen. (2016).
  2. Thaker, M. N., et al. Identifying producers of antibacterial compounds by screening for antibiotic resistance. Nature Biotechnology. 31, 922-927 (2013).
  3. Gajdács, M. The Concept of an Ideal Antibiotic: Implications for Drug Design. Molecules. 24, 892 (2019).
  4. Boucher, H. W., et al. Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clinical Infectious Diseases. 48, 1-12 (2009).
  5. Gajdács, M. The Continuing Threat of Methicillin-Resistant Staphylococcus aureus. Antibiotics. 8, 52 (2019).
  6. Gaudêncio, S. P., Pereira, F. Dereplication: Racing to speed up the natural products discovery process. Natural Product Reports. 32, 779-810 (2015).
  7. Ito, T., Masubuchi, M. Dereplication of microbial extracts and related analytical technologies. The Journal of Antibiotics (Tokyo). 67, 353-360 (2014).
  8. Van Middlesworth, F., Cannell, R. J. Dereplication and Partial Identification of Natural Products. Methods in Biotechnology. , 279-327 (2008).
  9. Tawfike, A. F., Viegelmann, C., Edrada-Ebel, R. Metabolomics and Dereplication Strategies in Natural Products. Metabolomics Tools for Natural Product Discovery: Methods and Protocols. Roessner, U., Dias, D. A. , Humana Press. Totowa, NJ. 227-244 (2013).
  10. Cox, G., et al. A Common Platform for Antibiotic Dereplication and Adjuvant Discovery. Cell Chemical Biology. 24, 98-109 (2017).
  11. Hubert, J., Nuzillard, J. M., Renault, J. H. Dereplication strategies in natural product research: How many tools and methodologies behind the same concept. Phytochemistry Reviews. 16, 55-95 (2017).
  12. Beutler, J. Dereplication of phorbol bioactives: Lyngbya majuscula and Croton cuneatus. Journal of Natural Products. 53, 867-874 (1990).
  13. Mohimani, H., et al. Dereplication of microbial metabolites through database search of mass spectra. Nature Communications. 9, 1-12 (2018).
  14. Baltz, R. H. Marcel Faber Roundtable: Is our antibiotic pipeline unproductive because of starvation, constipation or lack of inspiration. Journal of Industrial Microbiology and Biotechnology. 33, 507-513 (2006).
  15. Baltz, R. H. Antibiotic discovery from actinomycetes: Will a renaissance follow the decline and fall. Archives of Microbiology. 55, 186-196 (2005).

Tags

免疫学和感染, 问题 152, 抗生素, 脱体, 药物发现, 活性霉素,大肠杆菌,继发代谢物, 抗性酶, 天然产物
使用抗生素耐药性平台进行抗生素脱除
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Zubyk, H. L., Cox, G., Wright, G. D. More

Zubyk, H. L., Cox, G., Wright, G. D. Antibiotic Dereplication Using the Antibiotic Resistance Platform. J. Vis. Exp. (152), e60536, doi:10.3791/60536 (2019).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter