Summary

Medir e manipular vias neurais funcionalmente específicas no sistema motor humano com estimulação magnética transcraniana

Published: February 23, 2020
doi:

Summary

Este artigo descreve novas abordagens para medir e fortalecer vias neurais funcionalmente específicas com estimulação magnética transcraniana. Essas metodologias avançadas de estimulação cerebral não invasiva podem fornecer novas oportunidades para a compreensão das relações de comportamento cerebral e desenvolvimento de novas terapias para tratar distúrbios cerebrais.

Abstract

Entender as interações entre áreas cerebrais é importante para o estudo do comportamento direcionado ao objetivo. A neuroimagem funcional da conectividade cerebral forneceu insights importantes sobre processos fundamentais do cérebro, como cognição, aprendizado e controle motor. No entanto, essa abordagem não pode fornecer evidências causais para o envolvimento de áreas cerebrais de interesse. A estimulação magnética transcraniana (TMS) é uma ferramenta poderosa e não invasiva para estudar o cérebro humano que pode superar essa limitação modificando transitivamente a atividade cerebral. Aqui, destacamos os recentes avanços usando um método TMS de pulso emparelhado e dual-site com duas bobinas que sondam interações cortico-cortical no sistema motor humano durante diferentes contextos de tarefas. Além disso, descrevemos um protocolo TMS de dois locais baseado em estimulação associativa emparelhada cortical (cPAS) que melhora transitivamente a eficiência sináptica em duas áreas cerebrais interconectadas, aplicando pares repetidos de estímulos corticos com duas bobinas. Esses métodos podem fornecer uma melhor compreensão dos mecanismos subjacentes à função cognitivo-motor, bem como uma nova perspectiva sobre a manipulação de vias neurais específicas de forma direcionada para modular circuitos cerebrais e melhorar o comportamento. Essa abordagem pode ser uma ferramenta eficaz para desenvolver modelos mais sofisticados de relações de comportamento cerebral e melhorar o diagnóstico e tratamento de muitos transtornos neurológicos e psiquiátricos.

Introduction

A estimulação cerebral não invasiva é uma ferramenta de avaliação promissora e tratamento para muitos distúrbios neurológicos, como doença de Parkinson, doença de Alzheimer e derrame1,2,3,4. Há evidências acumuladas estabelecendo a relação entre as manifestações comportamentais de doenças neurológicas e anormalidades da excitabilidade cortical, neuroplasticidade, conectividade cortico-cortical e cortico-subcortical5,6. Portanto, o conhecimento básico sobre dinâmica da rede cerebral e plasticidade em condições neurológicas pode fornecer uma visão inestimável sobre o diagnóstico, a progressão e a resposta à terapia. A ressonância magnética funcional(fRessonância Magnética) é uma ferramenta útil para entender as complexas relações entre cérebro e comportamento em redes cerebrais saudáveis e doentes e tem o potencial de melhorar o tratamento com base em uma perspectiva de rede7,8,9. No entanto, a ressonância magnética fé correlação na natureza e não pode fornecer uma ligação causal entre a função e o comportamento do cérebro, nem manipular a conectividade funcional para restaurar circuitos neurais anormais associados a deficiências comportamentais em pacientes10,11,12. A estimulação magnética transcraniana (TMS) pode medir e modular a função e o comportamento cerebral humano na saúde e doença3,13,14,15.

TMS é um método seguro e não invasivo para estimular o cérebro humano16,17e pode ser usado para induzir e medir plasticidade18. Este método pode avançar nossa compreensão das relações causais entre áreas cerebrais individuais e comportamento10,11,12,19e suas interações funcionais específicas com outros nódulos de uma rede cerebral20,21,22,23. Até o momento, a maioria dos estudos se concentrou no sistema motor humano, dado que o TMS na área manual do córtex motor (M1) pode produzir potenciais espumários (MEPs) como leituras fisiológicas para mudanças associadas ao comportamento motor24, permitindo o exame de diferentes circuitos inibidores e excitatórios no nível do sistema no cérebro humano25. Avanços recentes usando uma abordagem tms de teste de condicionamento com duas bobinas mostram que é possível medir interações funcionais entre diferentes áreas corticais. No sistema motor, experimentos de TMS de dois locais mostram que insumos de áreas corticais interligadas com M1 podem mudar com demandas de tarefas, idade ou doença14,26. O trabalho seminal de Ferbert e colegas descobriu que aplicar um estímulo de condicionamento ao M1 antes de um estímulo de teste do outro M1 pode resultar em inibição da amplitude do EUROP, fenômeno conhecido como inibição intermemisférica de intervalo curto (SIHI)28. Vários estudos de TMS usando essa abordagem também mostraram que o M1 está fortemente interligado com o M1 contralateral, córtex pré-motor ventral (PMv), córtex pré-motor dorsal (PMd), área motora suplementar (SMA), pré-SMA, córtex sensorial primário (S1), córtex pré-frontal dorsolateral (DLPFC) e córtex parietal posterior (PPC) em repouso27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42. Curiosamente, o efeito da estimulação dessas áreas corticais na excitabilidade cortical motora é anatomicamente, temporalmente e funcionalmente específico para a atividade cerebral em curso durante a preparação de um movimento (estado e dependente do contexto43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,69). No entanto, pouquíssimos estudos usando TMS de dois sites caracterizaram padrões de conectividade cortico-cortical funcional com prejuízos motores e cognitivos em pacientes com distúrbios cerebrais70,71,72. Isso oferece oportunidades para desenvolver novos métodos para avaliar e tratar distúrbios motores e cognitivos.

Utilizando essa técnica, verificou-se também que pares repetidos de TMS cortical aplicados a áreas corticais interligadas com M1 como o contralateral M168,69,70, PMv76,77,78, SMA71, e PPC80,81,82 podem induzir mudanças na eficiência sináptica em vias neurais específicas baseadas no princípio hebésio de plástico associativo83 ,84,85,86 e melhorar o desempenho comportamental72,73,74. Ainda assim, poucos estudos têm utilizado essa abordagem para estudar circuito e disfunção de plasticidade em distúrbios neurológicos2,75,76,77,78,79,80,81,82,83,84,90,91,92, 93,94,95,96. Resta mostrar se o fortalecimento de vias neurais funcionalmente específicas com TMS pode restaurar a atividade em circuitos disfuncionais, ou se o potencial fortalecimento de circuitos intactos pode aumentar a resiliência97 em redes cerebrais que suportam a função motora e cognitiva ao longo da vida útil e na doença. A falta de compreensão fundamental dos mecanismos neurais subjacentes a distúrbios neurológicos e efeitos da estimulação em redes cerebrais disfuncionais interconectadas limita o tratamento atual.

Apesar de sua capacidade, a TMS ainda não se tornou uma parte padrão do armamento da neurociência e ferramentas clínicas para entender as relações de comportamento cerebral, fisiopatologia de distúrbios cerebrais e a eficácia do tratamento. Portanto, para realizar seu potencial e apoiar sua aplicação em larga escala, padronizar métodos TMS é importante porque é mais provável aumentar o rigor de futuros experimentos de TMS e reprodutibilidade em laboratórios independentes. Este artigo descreve como o TMS pode ser usado tanto para medir e manipular interações funcionais. Aqui, descrevemos essa técnica no sistema motor (por exemplo, a via parieto-motor44) medindo medidas de saída baseadas em TMS (por exemplo, MEPs), onde o método é melhor compreendido. No entanto, é importante notar que este protocolo também pode ser adaptado para o acoplamento funcional alvo de outras áreas subcorticais85, cerebellar86,87, e cortical. 73,74,88 Além disso, técnicas de neuroimagem como EEG89,90,91 e fMRI92,93 podem ser utilizadas para avaliar as alterações induzidas pelo TMS na atividade e conectividade26,94. Concluímos propondo que o estudo do envolvimento funcional da conectividade cortical de nível de circuito com esses métodos tms tanto em saúde quanto em doenças possibilita desenvolver diagnósticos direcionados e terapias inovadoras baseadas em modelos de rede mais sofisticados de relações de comportamento cerebral.

Protocol

Os três métodos TMS a seguir são descritos abaixo. Em primeiro lugar, dois métodos são descritos para medir a conectividade cortico-cortical usando estimulação magnética transcraniana de dois locais (dsTMS) enquanto os participantes estão 1) em repouso (estado de descanso) ou 2) realizando um movimento de alcance-a-compreensão dirigido por objetos ( dependente da tarefa). Em segundo lugar, um método de estimulação associativa emparelhada cortical (cPAS) é descrito para modular a interação entre duas área…

Representative Results

A Figura 5 mostra o tamanho de uma resposta MEP exemplar provocada no músculo FDI por TMS para um teste de estímulos não condicionados (TS sozinho para M1, traço azul) ou estímulos condicionados do PPC (CS-TS, traço vermelho) enquanto o participante estava em repouso (painel superior) ou planejando uma ação de agarramento direcionada ao objetivo a um objeto (painel inferior). Em repouso, o PPC exerce uma influência inibidora no Ipsilateral M1, como mostrado pela diminuição das amp…

Discussion

O método TMS de dois locais descrito aqui pode ser usado para investigar interações funcionais entre diferentes áreas corticais interconectadas com o córtex motor primário enquanto um participante está em repouso ou planejando uma ação direcionada ao objetivo. Embora a imagem cerebral seja correlativa, o conhecimento básico dos métodos TMS de dois sites pode revelar relações causais de comportamento cerebral associadas a alterações nos circuitos cortico-cortical. Além disso, a estimulação associativa em…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Este trabalho foi apoiado pela Universidade de Michigan: MCubed Scholars Program e School of Kinesiology.

Materials

Alpha B.I. D50 coil (coated) Magstim 50mm coil
BrainSight 2.0 Software Rogue Research Neuronavigation software
BrainSight frameless Stereotactic System Rogue Research Neuronavigation equiptment
D702 Coil Magstim 70mm coil
Discovery MR750 General Electric 3.0T MRI machine
Disposable Earplugs 3M Foam earplugs
ECG Electrodes 30mm x 24mm Coviden-Kendall H124SG Disposable electrodes
Four Channel Isolated Amplifier Intronix Technologies Corporation 2024F EMG amplifier
gGAMMAcap g.tec Medical Engineering EEG head cap
Micro1401-3 Cambridge Electronic Design Scientific data recorder and processing machine
Nuprep Skin Prep Gel Weaver and Company Skin prep abrasive gel
Signal v.7 Cambridge Electronic Design Data acquisition and analysis software
The Magstim BiStim2 Magstim Transcranial magnetic stimulator (two 2002 units)

References

  1. Ni, Z., Chen, R. Transcranial magnetic stimulation to understand pathophysiology and as potential treatment for neurodegenerative diseases. Translational Neurodegeneration. 4 (1), 1-12 (2015).
  2. Koch, G., Martorana, A., Caltagirone, C. Transcranial magnetic stimulation_ Emerging biomarkers and novel therapeutics in Alzheimer’s disease. Neuroscience Letters. 134355, (2019).
  3. Hallett, M., et al. Contribution of transcranial magnetic stimulation to assessment of brain connectivity and networks. Clinical Neurophysiology. 128 (11), 2125-2139 (2017).
  4. Hummel, F. C., Cohen, L. G. Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke. The Lancet Neurology. 5 (8), 708-712 (2006).
  5. Caligiore, D., et al. Parkinson’s disease as a system-level disorder. Nature Publishing Group. 2 (1), 1-9 (2016).
  6. Grefkes, C., Fink, G. R. Reorganization of cerebral networks after stroke: new insights from neuroimaging with connectivity approaches. Brain. 134 (5), 1264-1276 (2011).
  7. Calhoun, V. D., Miller, R., Pearlson, G., Adalı, T. The Chronnectome: Time-Varying Connectivity Networks as the Next Frontier in fMRI Data Discovery. Neuron. 84 (2), 262-274 (2014).
  8. Fox, M. D., et al. Resting-state networks link invasive and noninvasive brain stimulation across diverse psychiatric and neurological diseases. Proceedings of the National Academy of Sciences of the United States of America. 111 (41), 4367-4375 (2014).
  9. Fox, M. D., Halko, M. A., Eldaief, M. C., Pascual-Leone, A. Measuring and manipulating brain connectivity with resting state functional connectivity magnetic resonance imaging (fcMRI) and transcranial magnetic stimulation (TMS). NeuroImage. 62 (4), 2232-2243 (2012).
  10. Pascual-Leone, A., Walsh, V., Rothwell, J. Transcranial magnetic stimulation in cognitive neuroscience–virtual lesion, chronometry, and functional connectivity. Current Opinion in Neurobiology. 10 (2), 232-237 (2000).
  11. Pascual-Leone, A., Bartres-Faz, D., Keenan, J. P. Transcranial magnetic stimulation: studying the brain-behaviour relationship by induction of “virtual lesions”. Philosophical transactions of the Royal Society of London Series B, Biological Sciences. 354 (1387), 1229-1238 (1999).
  12. Bolognini, N., Ro, T. Transcranial magnetic stimulation: disrupting neural activity to alter and assess brain function. The Journal of Neuroscience. 30 (29), 9647-9650 (2010).
  13. Rothwell, J. C. Using transcranial magnetic stimulation methods to probe connectivity between motor areas of the brain. Human Movement Science. 30 (5), 906-915 (2010).
  14. Lafleur, L. P., Tremblay, S., Whittingstall, K., Lepage, J. F. Assessment of Effective Connectivity and Plasticity With Dual-Coil Transcranial Magnetic Stimulation. Brain Stimulation. 9 (3), 347-355 (2016).
  15. Chouinard, P. A., Paus, T. What have We Learned from “Perturbing” the Human Cortical Motor System with Transcranial Magnetic Stimulation. Frontiers in Human Neuroscience. 4, 173 (2010).
  16. Chen, R. Studies of human motor physiology with transcranial magnetic stimulation. Muscle & Nerve. 23 (S9), 26-32 (2000).
  17. Hallett, M. Transcranial magnetic stimulation and the human brain. Nature. 406 (6792), 147-150 (2000).
  18. Chen, R., Udupa, K. Measurement and modulation of plasticity of the motor system in humans using transcranial magnetic stimulation. Motor Control. 13 (4), 442-453 (2009).
  19. Walsh, V., Rushworth, M. A primer of magnetic stimulation as a tool for neuropsychology. Neuropsychologia. 37 (2), 125-135 (1999).
  20. Bestmann, S., et al. Mapping causal interregional influences with concurrent TMS-fMRI. Experimental Brain Research. 191 (4), 383-402 (2008).
  21. Siebner, H. R., Hartwigsen, G., Kassuba, T., Rothwell, J. C. How does transcranial magnetic stimulation modify neuronal activity in the brain? Implications for studies of cognition. Cortex. 45 (9), 1035-1042 (2009).
  22. Dayan, E., Censor, N., Buch, E. R., Sandrini, M., Cohen, L. G. Noninvasive brain stimulation: from physiology to network dynamics and back. Nature Publishing Group. 16 (7), 838-844 (2013).
  23. Sack, A. T. Transcranial magnetic stimulation, causal structure-function mapping and networks of functional relevance. Current Opinion in Neurobiology. 16 (5), 593-599 (2006).
  24. Bestmann, S., Krakauer, J. W. The uses and interpretations of the motor-evoked potential for understanding behaviour. Experimental Brain Research. 233 (3), 679-689 (2015).
  25. Vesia, M., Davare, M. Decoding Action Intentions in Parietofrontal Circuits. Journal of Neuroscience. 31 (46), 16491-16493 (2011).
  26. Cantarero, G., Celnik, P. Applications of TMS to Study Brain Connectivity. Brain Stimulation: Methodologies and Interventions. , 191-211 (2015).
  27. Ni, Z., et al. Two Phases of Interhemispheric Inhibition between Motor Related Cortical Areas and the Primary Motor Cortex in Human. Cerebral Cortex. 19 (7), 1654-1665 (2009).
  28. Ferbert, A., et al. Interhemispheric inhibition of the human motor cortex. The Journal of Physiology. 453, 525-546 (1992).
  29. Bäumer, T., et al. Inhibitory and facilitatory connectivity from ventral premotor to primary motor cortex in healthy humans at rest – A bifocal TMS study. Clinical Neurophysiology. 120 (9), 1724-1731 (2009).
  30. Koch, G., et al. Asymmetry of Parietal Interhemispheric Connections in Humans. Journal of Neuroscience. 31 (24), 8967-8975 (2011).
  31. Koch, G., et al. Focal stimulation of the posterior parietal cortex increases the excitability of the ipsilateral motor cortex. The Journal of Neuroscience. 27 (25), 6815-6822 (2007).
  32. Koch, G., et al. Interactions between pairs of transcranial magnetic stimuli over the human left dorsal premotor cortex differ from those seen in primary motor cortex. The Journal of Physiology. 578 (2), 551-562 (2007).
  33. Koch, G., et al. TMS activation of interhemispheric pathways between the posterior parietal cortex and the contralateral motor cortex. The Journal of Physiology. 587, 4281-4292 (2009).
  34. Ziluk, A., Premji, A., Nelson, A. J. Functional connectivity from area 5 to primary motor cortex via paired-pulse transcranial magnetic stimulation. Neuroscience Letters. 484 (1), 81-85 (2010).
  35. Karabanov, A. N., Chao, C. C., Paine, R., Hallett, M. Mapping different intra-hemispheric parietal-motor networks using twin coil TMS. Brain Stimulation. 6 (3), 384-389 (2012).
  36. Mochizuki, H., Huang, Y. Z., Rothwell, J. C. Interhemispheric interaction between human dorsal premotor and contralateral primary motor cortex. The Journal of Physiology. 561, 331-338 (2004).
  37. Civardi, C., Cantello, R., Asselman, P., Rothwell, J. C. Transcranial Magnetic Stimulation Can Be Used to Test Connections to Primary Motor Areas from Frontal and Medial Cortex in Humans. NeuroImage. 14 (6), 1444-1453 (2001).
  38. Groppa, S., et al. The human dorsal premotor cortex facilitates the excitability of ipsilateral primary motor cortex via a short latency cortico-cortical route. Human Brain Mapping. 33 (2), 419-430 (2011).
  39. Shirota, Y., et al. Increased primary motor cortical excitability by a single-pulse transcranial magnetic stimulation over the supplementary motor area. Experimental Brain Research. 219 (3), 339-349 (2012).
  40. Cattaneo, L., Barchiesi, G. Transcranial Magnetic Mapping of the Short-Latency Modulations of Corticospinal Activity from the Ipsilateral Hemisphere during Rest. Frontiers in Neural Circuits. 5, 14 (2011).
  41. Brown, M. J. N., et al. Somatosensory-motor cortex interactions measured using dual-site transcranial magnetic stimulation. Brain Stimulation. 12 (5), 1229-1243 (2019).
  42. Brown, M. J. N., Goldenkoff, E. R., Chen, R., Gunraj, C., Vesia, M. Using Dual-Site Transcranial Magnetic Stimulation to Probe Connectivity between the Dorsolateral Prefrontal Cortex and Ipsilateral Primary Motor Cortex in Humans. Brain Sciences. 9 (8), 177 (2019).
  43. Vesia, M., et al. Functional interaction between human dorsal premotor cortex and the ipsilateral primary motor cortex for grasp plans. Neuroreport. 29, 1355-1359 (2018).
  44. Vesia, M., et al. Human dorsomedial parieto-motor circuit specifies grasp during the planning of goal-directed hand actions. Cortex. 92, 175-186 (2017).
  45. Vesia, M., Bolton, D. A., Mochizuki, G., Staines, W. R. Human parietal and primary motor cortical interactions are selectively modulated during the transport and grip formation of goal-directed hand actions. Neuropsychologia. 51 (3), 410-417 (2013).
  46. Davare, M., Kraskov, A., Rothwell, J. C., Lemon, R. N. Interactions between areas of the cortical grasping network. Current Opinion in Neurobiology. 21 (4), 565-570 (2011).
  47. Davare, M., Rothwell, J. C., Lemon, R. N. Causal connectivity between the human anterior intraparietal area and premotor cortex during grasp. Current Biology. 20 (2), 176-181 (2010).
  48. Davare, M., Lemon, R., Olivier, E. Selective modulation of interactions between ventral premotor cortex and primary motor cortex during precision grasping in humans. The Journal of Physiology. 586, 2735-2742 (2008).
  49. Davare, M., Montague, K., Olivier, E., Rothwell, J. C., Lemon, R. N. Ventral premotor to primary motor cortical interactions during object-driven grasp in humans. Cortex. 45 (9), 1050-1057 (2009).
  50. Schintu, S., et al. Paired-Pulse Parietal-Motor Stimulation Differentially Modulates Corticospinal Excitability across Hemispheres When Combined with Prism Adaptation. Neural Plasticity. 2016 (4-6), 1-9 (2016).
  51. Isayama, R., et al. Rubber hand illusion modulates the influences of somatosensory and parietal inputs to the motor cortex. Journal of Neurophysiology. 121 (2), 563-573 (2019).
  52. Karabanov, A., et al. Timing-dependent modulation of the posterior parietal cortex-primary motor cortex pathway by sensorimotor training. Journal of Neurophysiology. 107 (11), 3190-3199 (2012).
  53. Picazio, S., et al. Prefrontal Control over Motor Cortex Cycles at Beta Frequency during Movement Inhibition. Current Biology. 24 (24), 2940-2945 (2014).
  54. Mackenzie, T. N., et al. Human area 5 modulates corticospinal output during movement preparation. Neuroreport. 27 (14), 1056-1060 (2016).
  55. Groppa, S., et al. A novel dual-site transcranial magnetic stimulation paradigm to probe fast facilitatory inputs from ipsilateral dorsal premotor cortex to primary motor cortex. NeuroImage. 62 (1), 500-509 (2012).
  56. O’Shea, J., Sebastian, C., Boorman, E. D., Johansen-Berg, H., Rushworth, M. F. S. Functional specificity of human premotor-motor cortical interactions during action selection. The European Journal of Neuroscience. 26 (7), 2085-2095 (2007).
  57. Mars, R. B., et al. Short-latency influence of medial frontal cortex on primary motor cortex during action selection under conflict. The Journal of Neuroscience. 29 (21), 6926-6931 (2009).
  58. Hasan, A., et al. Muscle and timing-specific functional connectivity between the dorsolateral prefrontal cortex and the primary motor cortex. Journal of Cognitive Neuroscience. 25 (4), 558-570 (2013).
  59. Fujiyama, H., et al. Age-Related Changes in Frontal Network Structural and Functional Connectivity in Relation to Bimanual Movement Control. The Journal of Neuroscience. 36 (6), 1808-1822 (2016).
  60. Koch, G., et al. Functional Interplay between Posterior Parietal and Ipsilateral Motor Cortex Revealed by Twin-Coil Transcranial Magnetic Stimulation during Reach Planning toward Contralateral Space. The Journal of Neuroscience. 28 (23), 5944-5953 (2008).
  61. Koch, G., et al. In vivo definition of parieto-motor connections involved in planning of grasping movements. NeuroImage. 51 (1), 300-312 (2010).
  62. Koch, G., et al. Resonance of cortico-cortical connections of the motor system with the observation of goal directed grasping movements. Neuropsychologia. 48 (12), 3513-3520 (2010).
  63. Koch, G., et al. Time course of functional connectivity between dorsal premotor and contralateral motor cortex during movement selection. The Journal of Neuroscience. 26 (28), 7452-7459 (2006).
  64. Koch, G., Rothwell, J. C. TMS investigations into the task-dependent functional interplay between human posterior parietal and motor cortex. Behavioural Brain Research. 202 (2), 147-152 (2009).
  65. Lago, A., et al. Ventral premotor to primary motor cortical interactions during noxious and naturalistic action observation. Neuropsychologia. 48 (6), 1802-1806 (2010).
  66. Picazio, S., Ponzo, V., Koch, G. Cerebellar Control on Prefrontal-Motor Connectivity During Movement Inhibition. The Cerebellum. 15 (6), 680-687 (2015).
  67. Byblow, W. D., et al. Functional Connectivity Between Secondary and Primary Motor Areas Underlying Hand-Foot Coordination. Journal of Neurophysiology. 98 (1), 414-422 (2007).
  68. Rizzo, V., et al. Associative cortico-cortical plasticity may affect ipsilateral finger opposition movements. Behavioural Brain Research. 216 (1), 433-439 (2011).
  69. Rizzo, V., et al. Paired Associative Stimulation of Left and Right Human Motor Cortex Shapes Interhemispheric Motor Inhibition based on a Hebbian Mechanism. Cerebral Cortex. 19 (4), 907-915 (2009).
  70. Koganemaru, S., et al. Human motor associative plasticity induced by paired bihemispheric stimulation. The Journal of Physiology. 587 (19), 4629-4644 (2009).
  71. Arai, N., et al. State-dependent and timing-dependent bidirectional associative plasticity in the human SMA-M1 network. Journal of Neuroscience. 31 (43), 15376-15383 (2011).
  72. Fiori, F., Chiappini, E., Avenanti, A. Enhanced action performance following TMS manipulation of associative plasticity in ventral premotor-motor pathway. NeuroImage. 183, 847-858 (2018).
  73. Chiappini, E., Silvanto, J., Hibbard, P. B., Avenanti, A., Romei, V. Strengthening functionally specific neural pathways with transcranial brain stimulation. Current Biology. 28 (13), 735-736 (2018).
  74. Romei, V., Chiappini, E., Hibbard, P. B., Avenanti, A. Empowering Reentrant Projections from V5 to V1 Boosts Sensitivity to Motion. Current Biology. 26 (16), 2155-2160 (2016).
  75. Zittel, S., et al. Effects of dopaminergic treatment on functional cortico-cortical connectivity in Parkinson’s disease. Experimental Brain Research. 233 (1), 329-337 (2014).
  76. Nelson, A. J., Hoque, T., Gunraj, C., Ni, Z., Chen, R. Impaired interhemispheric inhibition in writer’s cramp. Neurology. 75 (5), 441-447 (2010).
  77. Murase, N., Duque, J., Mazzocchio, R., Cohen, L. G. Influence of interhemispheric interactions on motor function in chronic stroke. Annals of Neurology. 55 (3), 400-409 (2004).
  78. Bonnì, S., et al. Altered Parietal-Motor Connections in Alzheimer’s Disease Patients. Journal of Alzheimer’s Disease. 33 (2), 525-533 (2012).
  79. Koch, G., et al. Altered dorsal premotor-motor interhemispheric pathway activity in focal arm dystonia. Movement Disorders. 23 (5), 660-668 (2008).
  80. Koch, G., et al. Hyperexcitability of parietal-motor functional connections in the intact left-hemisphere of patients with neglect. Brain. 131, 3147-3155 (2008).
  81. Di Lorenzo, F., et al. Long-term potentiation-like cortical plasticity is disrupted in Alzheimer’s disease patients independently from age of onset. Annals of Neurology. 80 (2), 202-210 (2016).
  82. Ponzo, V., et al. Altered inhibitory interaction among inferior frontal and motor cortex in l-dopa-induced dyskinesias. Movement Disorders. 31 (5), 755-759 (2016).
  83. Koch, G., et al. Effect of Cerebellar Stimulation on Gait and Balance Recovery in Patients With Hemiparetic Stroke. JAMA Neurology. 76 (2), 170-178 (2018).
  84. Palomar, F. J., et al. Parieto-motor functional connectivity is impaired in Parkinson’s disease. Brain Stimulation. 6 (2), 147-154 (2013).
  85. Udupa, K., et al. Cortical Plasticity Induction by Pairing Subthalamic Nucleus Deep-Brain Stimulation and Primary Motor Cortical Transcranial Magnetic Stimulation in Parkinson’s Disease. The Journal of Neuroscience. 36 (2), 396-404 (2016).
  86. Ugawa, Y., Uesaka, Y., Terao, Y., Hanajima, R., Kanazawa, I. Magnetic stimulation over the cerebellum in humans. Annals of Neurology. 37 (6), 703-713 (1995).
  87. Pinto, A. D., Chen, R. Suppression of the motor cortex by magnetic stimulation of the cerebellum. Experimental Brain Research. 140 (4), 505-510 (2001).
  88. Kohl, S., et al. Cortical Paired Associative Stimulation Influences Response Inhibition Cortico-cortical and Cortico-subcortical Networks. Biological Psychiatry. 85 (4), 355-363 (2019).
  89. Casula, E. P., Pellicciari, M. C., Picazio, S., Caltagirone, C., Koch, G. Spike-timing-dependent plasticity in the human dorso-lateral prefrontal cortex. NeuroImage. 143, 204-213 (2016).
  90. Veniero, D., Ponzo, V., Koch, G. Paired Associative Stimulation Enforces the Communication between Interconnected Areas. Journal of Neuroscience. 33 (34), 13773-13783 (2013).
  91. Tremblay, S., et al. Clinical utility and prospective of TMS-EEG. Clinical Neurophysiology. 130 (5), 802-844 (2019).
  92. Johnen, V. M., Neubert, F. X., Buch, E. R., Verhagen, L. Causal manipulation of functional connectivity in a specific neural pathway during behaviour and at rest. eLife. 4, 04585 (2015).
  93. Santarnecchi, E., et al. Modulation of network-to-network connectivity via spike-timing-dependent noninvasive brain stimulation. Human Brain Mapping. 39 (12), 4870-4883 (2018).
  94. Bergmann, T. O., Karabanov, A., Hartwigsen, G., Thielscher, A., Siebner, H. R. Combining non-invasive transcranial brain stimulation with neuroimaging and electrophysiology: Current approaches and future perspectives. NeuroImage. 140, 4-19 (2016).
  95. Rossi, S., Hallett, M., Rossini, P. M., Pascual-Leone, A. Screening questionnaire before TMS: An update. Clinical Neurophysiology. 122 (8), 1686 (2011).
  96. Keel, J. C., Smith, M. J., Wassermann, E. M. A safety screening questionnaire for transcranial magnetic stimulation. Clinical Neurophysiology. 112 (4), 720 (2001).
  97. Rossini, P. M., et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee. Electroencephalography and Clinical Neurophysiology. 91 (2), 79-92 (1994).
  98. Rossini, P. M., et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clinical Neurophysiology. 126 (6), 1071-1107 (2015).
  99. Wassermann, E. M. Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation, June 5-7, 1996. Electroencephalography and Clinical Neurophysiology. 108 (1), 1-16 (1998).
  100. Rossi, S., Hallett, M., Rossini, P. M., Pascual-Leone, A. Safety of TMS Consensus Group. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clinical Neurophysiology. 120 (12), 2008-2039 (2009).
  101. Oldfield, R. C. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 9 (1), 97-113 (1971).
  102. Villamar, M. F., et al. Technique and Considerations in the Use of 4×1 Ring High-definition Transcranial Direct Current Stimulation (HD-tDCS). Journal of Visualized Experiments. (77), e50309 (2013).
  103. Sack, A. T., et al. Optimizing functional accuracy of TMS in cognitive studies: a comparison of methods. Journal of Cognitive Neuroscience. 21 (2), 207-221 (2009).
  104. Yousry, T. A., et al. Localization of the motor hand area to a knob on the precentral gyrus. A new landmark. Brain. 120, 141-157 (1997).
  105. Groppa, S., et al. A practical guide to diagnostic transcranial magnetic stimulation: Report of an IFCN committee. Clinical Neurophysiology. 123 (5), 858-882 (2012).
  106. Cattaneo, L., et al. A cortico-cortical mechanism mediating object-driven grasp in humans. Proceedings of the National Academy of Sciences of the United States of America. 102 (3), 898-903 (2005).
  107. Hebb, D. O. . The organization of behavior: A neurophysiological approach. , (1949).
  108. Caporale, N., Dan, Y. Spike Timing-Dependent Plasticity: A Hebbian Learning Rule. Annual Review of Neuroscience. 31 (1), 25-46 (2008).
  109. Markram, H., Lübke, J., Frotscher, M., Sakmann, B. Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science. 275 (5297), 213-215 (1997).
  110. Jackson, A., Mavoori, J., Fetz, E. E. Long-term motor cortex plasticity induced by an electronic neural implant. Nature. 444 (7115), 56-60 (2006).
  111. Koch, G., Ponzo, V., Di Lorenzo, F., Caltagirone, C., Veniero, D. Hebbian and Anti-Hebbian Spike-Timing-Dependent Plasticity of Human Cortico-Cortical Connections. Journal of Neuroscience. 33 (23), 9725-9733 (2013).
  112. Romei, V., Thut, G., Silvanto, J. Information-Based Approaches of Noninvasive Transcranial Brain Stimulation. Trends in Neurosciences. 39 (11), 782-795 (2016).
  113. Carson, R. G., et al. Excitability changes in human forearm corticospinal projections and spinal reflex pathways during rhythmic voluntary movement of the opposite limb. The Journal of Physiology. 560, 929-940 (2004).

Play Video

Cite This Article
Goldenkoff, E. R., Mashni, A., Michon, K. J., Lavis, H., Vesia, M. Measuring and Manipulating Functionally Specific Neural Pathways in the Human Motor System with Transcranial Magnetic Stimulation. J. Vis. Exp. (156), e60706, doi:10.3791/60706 (2020).

View Video