Summary

为癌症药理学研究创建匹配的体内/体外患者衍生模型对 PDX 和 PDX 衍生器官

Published: May 05, 2021
doi:

Summary

描述使用患者衍生的异种格拉夫特 (PDX) 进行体外筛查的方法,从而形成匹配的体内/体外模型对。PDX 肿瘤被机械或酶地收获/加工成小块,然后是 Clevers 的生长肿瘤器官的方法,这些器官是通过、冷冻保存和针对原始 PDX 进行特征的。

Abstract

患者衍生的肿瘤异种移植(PDXs)被认为是最具预测性的前科模型,主要被认为是由癌症干细胞(CSC)驱动的常规癌症药物评估。一个大型的PDX库反映了患者群体的多样性,从而能够进行基于人群的临床前试验(”第二阶段类似小鼠的临床试验”):但是,PDX 具有吞吐量低、成本高、持续时间长的实际局限性。肿瘤器官,也是患者衍生的CSC驱动模型,可以被认为是PDX的体外等价物,克服了某些PDX限制,用于处理大型器官库或化合物库。这项研究描述了一种创建PDX衍生器官(PDXO)的方法,从而产生了体外和体内药理学研究的配对模型。皮下移植的PDX-CR2110肿瘤是从肿瘤携带小鼠身上采集的,当肿瘤达到200-800毫米3时,按照批准的尸检程序,然后切除相邻的非肿瘤组织,分离成小肿瘤片段。小肿瘤碎片被洗净,并通过一个100μm细胞过滤器去除碎片。细胞簇被收集并悬挂在地下室膜提取物 (BME) 溶液中,并镀在 6 井板中,作为与周围液体介质一起生长的固体液滴,用于 CO2 孵化器的生长。在光显微镜下每周监测两次器官生长,并记录摄影,然后每周进行2次或3次液体介质变化。通过机械剪切破坏BME嵌入器官,辅之以添加滴虫素和添加10μM Y-27632,进一步通过(7天后)1:2的比例。器官在离心从BME释放后,在低温管中冷冻保存,用于长期储存,并取样(如DNA、RNA和FFPE块)以作进一步鉴定。

Introduction

癌症是各种遗传和免疫学疾病的集合。有效治疗的成功开发高度依赖于有效预测临床结果的实验模型。长期以来,大型患者衍生异种移植(PDX)库一直被视为体外系统的转化系统,以测试化疗和/或靶向疗法,因为他们能够重新概括患者肿瘤特征、异质性和患者药物反应1,从而使II期样小鼠临床试验能够提高临床成功率。PDX通常被认为是癌症干细胞疾病,具有遗传稳定性,与细胞系衍生的异种移植2形成鲜明对比。在过去的几十年里,世界各地都建立了大量的PDX系列,成为当今癌症药物开发的主力军。这些动物模型虽然应用广泛,转化价值巨大,但内在成本高、耗时、吞吐量低,因此不足以进行大规模筛选。PDX也不适合免疫肿瘤学(IO)测试,由于免疫损害的性质4。因此,充分利用现有的大型 PDX 库是不切实际的。

最近由汉斯·克莱弗斯实验室5号开创的发现,在大多数上皮起源5的人类器官中,建立了由成人干细胞产生的器官体外培养。这些协议已经进一步完善,使有机体从假定的CSC在人类癌的各种迹象6,7的增长。这些患者衍生的器官(PDOs)是基因稳定的8,9,并已被证明是高度预测临床治疗结果10,11,12。此外,PDOs 的体外性质使高通量筛查 (HTS)13能够实现,从而有可能提供比体内模型更优越的优势,并利用大型器官库作为患者群体的代名词。PDOs 有望成为重要的发现和转化平台,克服上述 PDX 的许多局限性。

PDO 和 PDX 都是患者衍生和 CSC 驱动的模型,能够在个性化治疗或临床试验格式的背景下评估治疗。现有的大型PDX库,如专有收藏的>3000 PDXs 14,15,16,17,因此适合肿瘤器官库(PDX衍生器官,或PDXO),从而形成了一个匹配的配对PDX和PDXO模型库。本报告描述了创建和描述结肠直肠癌PDXO-CR2110与其父母PDX-CR2110模型16相关的程序。

Protocol

所有涉及动物护理和使用的协议和修正或程序在开展研究之前都经过皇家生物科学机构动物护理和使用委员会 (IACUC) 的审查和批准。根据国家研究理事会《实验室动物护理和使用指南》(2011年)中报告的《实验室动物护理和使用指南》,对动物的护理和使用是根据AALAC(实验室动物护理评估和认证协会)国际准则进行的。所有动物实验程序均在SPF(特定无病原体)设施的无菌条件下进行,并严…

Representative Results

PDXO 的形态学,典型的光显微镜下的器官,与父母的 PDX 每 H&E 染色一致在光显微镜下,PDXO-CR2110演示了典型的囊性形态(图1A),如以前描述的患者衍生器官(PDO),支持PDXO和PDO在相同培养条件下相似的证据。 H&E染色组织的病理学检查显示,PDXO-CR2110(图1B)的组织结构和细胞类型反映了原始的PDX-CR2110(<strong class="x…

Discussion

本报告中PDX-/PDXO-CR2110的初步数据支持PDX与其衍生物PDXO在基因组学、组织病理学和药理学方面的生物学等价性,因为这两种模型都代表了从患者原始CSC衍生的疾病形式。这两种模型都是患者衍生的疾病模型,可能预测患者10、11、12、21的临床反应。匹配的体外模型和体内模型可以相辅相成,在体内进行…

Disclosures

The authors have nothing to disclose.

Acknowledgements

作者要感谢乔迪·巴博博士、费德里卡·帕里西博士和拉金德拉·库马里博士对手稿的批判性阅读和编辑。作者还要感谢皇家生物科学肿瘤学体外和体内团队的巨大技术努力。

Materials

Advanced DMEM/F12 Life Technologies 12634028 Base medium
DMEM Hyclone SH30243.01 Washing medium
Collagenese type II Invitrogen 17101015 Digest tumor
Matrigel Corning 356231 Organoid culture matrix (Basement Membrane Extract, growth factor reduced)
N-Ac Sigma A9165 Organoid culture medium
A83-01 Tocris 2939 Organoid culture medium
B27 Life Technologies 17504044 Organoid culture medium
EGF Peprotech AF-100-15 Organoid culture medium
Noggin Peprotech 120-10C Organoid culture medium
Nicotinamide Sigma N0636 Organoid culture medium
SB202190 Sigma S7076 Organoid culture medium
Gastrin Sigma G9145 Organoid culture medium
Rspondin Peprotech 120-38-1000 Organoid culture medium
L-glutamine Life Technologies 35050038 Organoid culture medium
Hepes Life Technologies 15630056 Organoid culture medium
penicillin-streptomycin Life Technologies 15140122 Organoid culture medium
Y-27632 Abmole M1817 Organoid culture medium
Dispase Life Technologies 17105041 Screening assay
CellTiter-Glo 3D Promega G9683 Screening assay (luminescent ATP indicator)
Multidrop dispenser Thermo Fisher Multidrop combi Plating organoids/CellTiter-Glo 3D addition
Digital dispener Tecan D300e Compound addition
Envision Plate reader Perkin Elmer 2104 Luminescence reading
Balb/c nude mice Beijing HFK Bio-Technology Co
RNAeasy Mini kit Qiagen 74104 tRNA purification kit
DNAeasy Blood & Tissue Kit Qiagen 69506 DNA purification kit
Histogel Thermo Fisher HG-4000-012 Organoid embedding

References

  1. Tentler, J. J., et al. Patient-derived tumour xenografts as models for oncology drug development. Nature Reviews Clinical Oncology. 9 (6), 338-350 (2012).
  2. Gao, H., et al. High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response. Nature Medicine. 21 (11), 1318-1325 (2015).
  3. Yang, M., et al. Overcoming erlotinib resistance with tailored treatment regimen in patient-derived xenografts from naive Asian NSCLC patients. International Journal of Cancer. 132 (2), 74-84 (2013).
  4. Li, Q. X., Feuer, G., Ouyang, X., An, X. Experimental animal modeling for immuno-oncology. Pharmacology & Therapeutics. 173, 34-46 (2017).
  5. Sato, T., et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 459 (7244), 262-265 (2009).
  6. Drost, J., Clevers, H. Organoids in Cancer Researchearch. Nature Reviews Cancer. 18 (7), 407-418 (2018).
  7. Muthuswamy, S. K. Organoid Models of Cancer Explode with Possibilities. Cell Stem Cell. 22 (3), 290-291 (2018).
  8. Sachs, N., et al. A Living Biobank of Breast Cancer Organoids Captures Disease Heterogeneity. Cell. 172 (1-2), 373-386 (2018).
  9. Weeber, F., et al. Preserved genetic diversity in organoids cultured from biopsies of human colorectal cancer metastases. Proceedings of the National Academy of Sciences of the United States of America. 112 (43), 13308-13311 (2015).
  10. Vlachogiannis, G., et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science. 359 (6378), 920-926 (2018).
  11. Yao, Y., et al. Patient-Derived Organoids Predict Chemoradiation Responses of Locally Advanced Rectal Cancer. Cell Stem Cell. 26 (1), 17-26 (2020).
  12. Ganesh, K., et al. A rectal cancer organoid platform to study individual responses to chemoradiation. Nature Medicine. 25 (10), 1607-1614 (2019).
  13. van de Wetering, M., et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell. 161 (4), 933-945 (2015).
  14. Yang, J. P., et al. A novel RNAi library based on partially randomized consensus sequences of nuclear receptors: identifying the receptors involved in amyloid beta degradation. Genomics. 88 (3), 282-292 (2006).
  15. Zhang, L., et al. A subset of gastric cancers with EGFR amplification and overexpression respond to cetuximab therapy. Scientific Reports. 3, 2992 (2013).
  16. Chen, D., et al. A set of defined oncogenic mutation alleles seems to better predict the response to cetuximab in CRC patient-derived xenograft than KRAS 12/13 mutations. Oncotarget. 6 (38), 40815-40821 (2015).
  17. Guo, S., et al. Molecular Pathology of Patient Tumors, Patient-Derived Xenografts, and Cancer Cell Lines. Cancer Research. 76 (16), 4619-4626 (2016).
  18. Sato, T., et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology. 141 (5), 1762-1772 (2011).
  19. Tiriac, H., French, R., Lowy, A. M. Isolation and Characterization of Patient-derived Pancreatic Ductal Adenocarcinoma Organoid Models. Journal of Visualized Experiments. (155), (2020).
  20. Kopper, O., et al. An organoid platform for ovarian cancer captures intra- and interpatient heterogeneity. Nature Medicine. 25 (5), 838-849 (2019).
  21. Corcoran, R. B., et al. Combined BRAF and MEK Inhibition With Dabrafenib and Trametinib in BRAF V600-Mutant Colorectal Cancer. Journal of Clinical Oncology. , (2015).
  22. Huch, M., et al. Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell. 160 (1-2), 299-312 (2015).

Play Video

Cite This Article
Xu, X., Shang, L., Wang, P., Zhou, J., Ouyang, X., Zheng, M., Mao, B., Zhang, L., Chen, B., Wang, J., Chen, J., Qian, W., Guo, S., Huang, Y., Li, Q. Creating Matched In vivo/In vitro Patient-Derived Model Pairs of PDX and PDX-Derived Organoids for Cancer Pharmacology Research. J. Vis. Exp. (171), e61382, doi:10.3791/61382 (2021).

View Video