Summary

Création de paires de modèles appariés in vivo/in vitro dérivés du patient d’organoïdes dérivés de PDX et de PDX pour la recherche en pharmacologie du cancer

Published: May 05, 2021
doi:

Summary

Une méthode est décrite pour créer des organoïdes à l’aide de xénogreffes dérivées du patient (PDX) pour le dépistage in vitro, ce qui donne des paires appariées de modèles in vivo/in vitro. Des tumeurs de PDX ont été moissonnes/traitées en petits morceaux mécaniquement ou enzymatiquement, suivies du Clevers’ méthode pour cultiver des organoids de tumeur qui ont été passaged, cryopreserved et caractérisés contre le PDX original.

Abstract

Les xénogreffes tumorales dérivées du patient (PDX) sont considérées comme les modèles précliniques les plus prédictifs, largement considérés comme pilotés par les cellules souches cancéreuses (CSC) pour l’évaluation conventionnelle des médicaments anticancéreux. Une grande bibliothèque de PDX reflète la diversité des populations de patients et permet ainsi des essais précliniques basés sur la population (« essais cliniques de souris de type II »); cependant, pdx ont des limites pratiques de faible débit, coûts élevés et longue durée. Les organoïdes tumoraux, étant également des modèles CSC-conduits patients-dérivés, peuvent être considérés comme l’équivalent in vitro de PDX, surmontant certaines limitations de PDX pour traiter de grandes bibliothèques d’organoïdes ou de composés. Cette étude décrit une méthode pour créer des organoïdes dérivés de PDX (PDXO), résultant ainsi en des modèles appariés pour la recherche en pharmacologie in vitro et in vivo. Des tumeurs PDX-CR2110 sous-cutanées-transplantées ont été rassemblées des souris de tumeur-roulement quand les tumeurs ont atteint 200-800millimètres 3,par une procédure approuvée d’autopsie, suivie du déplacement des tissus non-tumoraux adjacents et de la dissociation dans de petits fragments de tumeur. Les petits fragments tumoraux ont été lavés et passés à travers une passoire cellulaire de 100 μm pour enlever les débris. Des amas de cellules ont été rassemblés et suspendus dans la solution d’extrait de membrane de sous-sol (BME) et plaqués dans une plaque de 6 puits comme gouttelette solide avec des milieux liquides environnants pour la croissance dans un incubateur de CO2. La croissance d’Organoid a été surveillée deux fois par semaine sous la photomicroscopie et enregistrée par la photographie, suivie du changement liquide de milieu 2 ou 3 fois par semaine. Les organoïdes cultivés ont ensuite été croisés (7 jours plus tard) à un rapport de 1:2 en perturbant les organoïdes incorporés au BME à l’aide d’un cisaillement mécanique, aidés par l’ajout de trypsine et l’ajout de 10 μM d’Y-27632. Les organoïdes ont été cryoconservés dans des cryo-tubes pour le stockage à long terme, après libération de BME par centrifugation, et également échantillonnés (par exemple, l’ADN, l’ARN et le bloc FFPE) pour une caractérisation plus approfondie.

Introduction

Les cancers sont un ensemble de divers troubles génétiques et immunologiques. Le succès de la mise au point de traitements efficaces dépend fortement de modèles expérimentaux qui prédisent efficacement les résultats cliniques. De grandes bibliothèques de xénogreffes dérivées du patient (PDX) bien caractérisées ont longtemps été considérées comme le système translationnel in vivo de choix pour tester les thérapies chimio- et / ou ciblées en raison de leur capacité à récapituler les caractéristiques tumorales du patient, l’hétérogénéité et la réponse du médicament patient1,permettant ainsi aux essais cliniques de souris de type Phase II d’améliorer le succès clinique2,3. Les PDX sont généralement considérés comme des maladies des cellules souches cancéreuses, présentant une stabilité génétique, contrairement aux xénogreffes dérivées de lignées cellulaires2. Au cours des dernières décennies, de grandes collections de PDX ont été créées dans le monde entier, devenant le cheval de bataille du développement de médicaments anticancéreux aujourd’hui. Bien que largement utilisés et ayant une grande valeur translationnelle, ces modèles animaux sont intrinsèquement coûteux, longs et à faible débit, donc inadéquats pour le criblage à grande échelle. Les PDX sont également indésirables pour les tests d’immuno-oncologie (IO) en raison d’une nature immunodéprimée4. Il n’est donc pas pratique de tirer pleinement parti de la grande bibliothèque de PDX disponible.

Des découvertes récentes, initiées par le laboratoire5de Hans Clevers, ont conduit à l’établissement de cultures in vitro d’organoïdes générés à partir de cellules souches adultes dans la plupart des organes humains d’origine épithéliale5. Ces protocoles ont été affinés pour permettre la croissance d’organoïdes à partir de CSC supposés dans des carcinomes humains de diverses indications6,7. Ces organoïdes dérivés du patient (PDO) sont génomiquement stables8,9 et se sont avérés hautement prédictifs des résultats du traitement clinique10,11,12. En outre, la nature in vitro des PDO permet un criblage à haut débit (HTS)13,offrant ainsi potentiellement un avantage sur les modèles in vivo et tirant parti de grandes bibliothèques organoïdes comme substitut de la population de patients. Les PDO sont sur le point de devenir une importante plate-forme de découverte et de traduction, surmontant les nombreuses limitations des PDX décrites ci-dessus.

L’AOP et la PDX sont des modèles dérivés du patient et axés sur le SCC, qui ont la capacité d’évaluer les traitements dans le contexte d’un traitement personnalisé ou d’un format d’essai clinique. Les grandes bibliothèques existantes de PDX, comme la collection propriétaire de >3000 PDX14,15,16,17,conviennent donc à la génération rapide de bibliothèques d’organoïdes tumoraux (organoïdes dérivés de PDX, ou PDXO), résultant en une bibliothèque appariée de modèles PDX et PDXO appariés. Ce rapport décrit la procédure pour créer et caractériser le cancer côlorectal PDXO-CR2110 par rapport à son pdx-cr2110 parental modèle16.

Protocol

Tous les protocoles et modifications ou procédures concernant le soin et l’utilisation des animaux ont été examinés et approuvés par le Crown Bioscience Institutional Animal Care and Use Committee (IACUC) avant la réalisation des études. Le soin et l’utilisation des animaux ont été effectués conformément aux lignes directrices internationales de l’AAALAC (Association for Assessment and Accreditation of Laboratory Animal Care), telles qu’elles sont indiquées dans le Guide pour le soin et l’utilisatio…

Representative Results

Morphologie des PDXO, typique des organoïdes sous microcopie légère, et compatible avec pdx parental par coloration H&EEn microscopie optique, PDXO-CR2110 démontre une morphologie kystique typique(figure 1A),comme décrit précédemment pour les organoïdes dérivés du patient (AOP), preuves soutenant la similitude entre PDXO et AOP dans les mêmes conditions de culture. L’examen histopathologique par coloration H&E révèle que les str…

Discussion

Les données préliminaires pour PDX-/PDXO-CR2110 dans ce rapport soutiennent l’équivalence biologique entre PDX et son dérivé, PDXO, en ce qui concerne la génomique, l’histopathologie et la pharmacologie, puisque les deux modèles représentent les formes de maladie dérivées du CSC original du patient. Les deux modèles sont des modèles de maladies dérivées du patient, potentiellement prédictifs de la réponse clinique des patients10,11,

Disclosures

The authors have nothing to disclose.

Acknowledgements

Les auteurs tiennent à remercier Jody Barbeau, Federica Parisi et Rajendra Kumari pour la lecture critique et l’édition du manuscrit. Les auteurs tiennent également à remercier l’équipe in vitro et in vivo de Crown Bioscience Oncology pour ses grands efforts techniques.

Materials

Advanced DMEM/F12 Life Technologies 12634028 Base medium
DMEM Hyclone SH30243.01 Washing medium
Collagenese type II Invitrogen 17101015 Digest tumor
Matrigel Corning 356231 Organoid culture matrix (Basement Membrane Extract, growth factor reduced)
N-Ac Sigma A9165 Organoid culture medium
A83-01 Tocris 2939 Organoid culture medium
B27 Life Technologies 17504044 Organoid culture medium
EGF Peprotech AF-100-15 Organoid culture medium
Noggin Peprotech 120-10C Organoid culture medium
Nicotinamide Sigma N0636 Organoid culture medium
SB202190 Sigma S7076 Organoid culture medium
Gastrin Sigma G9145 Organoid culture medium
Rspondin Peprotech 120-38-1000 Organoid culture medium
L-glutamine Life Technologies 35050038 Organoid culture medium
Hepes Life Technologies 15630056 Organoid culture medium
penicillin-streptomycin Life Technologies 15140122 Organoid culture medium
Y-27632 Abmole M1817 Organoid culture medium
Dispase Life Technologies 17105041 Screening assay
CellTiter-Glo 3D Promega G9683 Screening assay (luminescent ATP indicator)
Multidrop dispenser Thermo Fisher Multidrop combi Plating organoids/CellTiter-Glo 3D addition
Digital dispener Tecan D300e Compound addition
Envision Plate reader Perkin Elmer 2104 Luminescence reading
Balb/c nude mice Beijing HFK Bio-Technology Co
RNAeasy Mini kit Qiagen 74104 tRNA purification kit
DNAeasy Blood & Tissue Kit Qiagen 69506 DNA purification kit
Histogel Thermo Fisher HG-4000-012 Organoid embedding

References

  1. Tentler, J. J., et al. Patient-derived tumour xenografts as models for oncology drug development. Nature Reviews Clinical Oncology. 9 (6), 338-350 (2012).
  2. Gao, H., et al. High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response. Nature Medicine. 21 (11), 1318-1325 (2015).
  3. Yang, M., et al. Overcoming erlotinib resistance with tailored treatment regimen in patient-derived xenografts from naive Asian NSCLC patients. International Journal of Cancer. 132 (2), 74-84 (2013).
  4. Li, Q. X., Feuer, G., Ouyang, X., An, X. Experimental animal modeling for immuno-oncology. Pharmacology & Therapeutics. 173, 34-46 (2017).
  5. Sato, T., et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 459 (7244), 262-265 (2009).
  6. Drost, J., Clevers, H. Organoids in Cancer Researchearch. Nature Reviews Cancer. 18 (7), 407-418 (2018).
  7. Muthuswamy, S. K. Organoid Models of Cancer Explode with Possibilities. Cell Stem Cell. 22 (3), 290-291 (2018).
  8. Sachs, N., et al. A Living Biobank of Breast Cancer Organoids Captures Disease Heterogeneity. Cell. 172 (1-2), 373-386 (2018).
  9. Weeber, F., et al. Preserved genetic diversity in organoids cultured from biopsies of human colorectal cancer metastases. Proceedings of the National Academy of Sciences of the United States of America. 112 (43), 13308-13311 (2015).
  10. Vlachogiannis, G., et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science. 359 (6378), 920-926 (2018).
  11. Yao, Y., et al. Patient-Derived Organoids Predict Chemoradiation Responses of Locally Advanced Rectal Cancer. Cell Stem Cell. 26 (1), 17-26 (2020).
  12. Ganesh, K., et al. A rectal cancer organoid platform to study individual responses to chemoradiation. Nature Medicine. 25 (10), 1607-1614 (2019).
  13. van de Wetering, M., et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell. 161 (4), 933-945 (2015).
  14. Yang, J. P., et al. A novel RNAi library based on partially randomized consensus sequences of nuclear receptors: identifying the receptors involved in amyloid beta degradation. Genomics. 88 (3), 282-292 (2006).
  15. Zhang, L., et al. A subset of gastric cancers with EGFR amplification and overexpression respond to cetuximab therapy. Scientific Reports. 3, 2992 (2013).
  16. Chen, D., et al. A set of defined oncogenic mutation alleles seems to better predict the response to cetuximab in CRC patient-derived xenograft than KRAS 12/13 mutations. Oncotarget. 6 (38), 40815-40821 (2015).
  17. Guo, S., et al. Molecular Pathology of Patient Tumors, Patient-Derived Xenografts, and Cancer Cell Lines. Cancer Research. 76 (16), 4619-4626 (2016).
  18. Sato, T., et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology. 141 (5), 1762-1772 (2011).
  19. Tiriac, H., French, R., Lowy, A. M. Isolation and Characterization of Patient-derived Pancreatic Ductal Adenocarcinoma Organoid Models. Journal of Visualized Experiments. (155), (2020).
  20. Kopper, O., et al. An organoid platform for ovarian cancer captures intra- and interpatient heterogeneity. Nature Medicine. 25 (5), 838-849 (2019).
  21. Corcoran, R. B., et al. Combined BRAF and MEK Inhibition With Dabrafenib and Trametinib in BRAF V600-Mutant Colorectal Cancer. Journal of Clinical Oncology. , (2015).
  22. Huch, M., et al. Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell. 160 (1-2), 299-312 (2015).

Play Video

Cite This Article
Xu, X., Shang, L., Wang, P., Zhou, J., Ouyang, X., Zheng, M., Mao, B., Zhang, L., Chen, B., Wang, J., Chen, J., Qian, W., Guo, S., Huang, Y., Li, Q. Creating Matched In vivo/In vitro Patient-Derived Model Pairs of PDX and PDX-Derived Organoids for Cancer Pharmacology Research. J. Vis. Exp. (171), e61382, doi:10.3791/61382 (2021).

View Video