Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Engineering

基于数字微流体的多功能套件,用于科学教育

Published: April 26, 2021 doi: 10.3791/61978

Summary

我们描述了一个教育工具包,允许用户执行多个实验,并获得数字微流体的实践经验。

Abstract

本文描述了一个基于数字微流体的教育工具包。据报道,基于发光的化学发光实验协议是一个具体的例子。它还具有荧光成像能力和基于超声波雾化器的封闭式加湿外壳,以防止蒸发。该套件可在短时间内组装,电子和焊接培训最少。该套件允许本科生/研究生和爱好者以直观的方式获得微流体的实践经验,并接受培训,以熟悉数字微流体。

Introduction

微流体是一个高度跨学科的领域,对物理、化学、生物学和工程学进行梳理,以操纵从女性到微升1等少量液体。微流体也是一个非常广泛和活跃的领域:科学网搜索返回了近20,000份出版物,但没有足够的文献和评论论文使用微流体作为教育工具2。有两篇有见地的,虽然过时的评论文章由莱格和芬琴科3,4。莱格向教育工作者介绍了芯片3上的实验室的想法。芬琴科指出了微流体教学实验室在科技工程数学(STEM)教育中的作用,并将哲学简化为"教授微流体"和"使用微流体"。Rackus、Ridel-Kruse和帕姆在2019年的一项最新评论指出,除了在性质上是跨学科的外,微流体也是一个非常实际的课题2。与微流体实践相关的实践活动使学生能够进行基于查询的学习,并使其成为科学交流和外联的引人入胜的工具。微流体确实在正式和非正式环境中为科学教育提供了很大的潜力,也是吸引和教育公众了解现代科学跨学科方面的理想"工具"。

低成本微通道设备、纸张微流体和数字微流体等是用于教育目的的理想工具。在这些平台中,数字微流体仍然深奥,缺乏基于数字微流体的同行评审报告在这里,我们建议使用数字微流体作为教育工具有几个原因。首先,数字微流体与基于微通道的模式非常不同,因为它基于对液滴的操纵和水滴作为离散微维斯的使用。其次,水滴在相对通用的电极阵列平台上纵,因此数字微流体可以与微电子紧密结合。用户可以利用一套扩展的电子元件,现在非常方便自己动手的应用程序与液滴进行电子接口。因此,我们认为,数字微流体可以让学生体验这些独特的方面,并持开放的心态,不要过分坚持基于微渠道的低雷诺数字微流体1。

简言之,数字微流体领域主要基于电击现象,这是加布里埃尔·利普曼5,6首次描述的。最近的发展是由贝尔格在20世纪90年代初开始的。他的主要贡献是引入一个薄绝缘体,将导电液体与金属电极分离,以消除电解问题。这个想法被称为介电(EWOD)上的电湿。随后,数字微流体被几个先驱研究人员8,9推广。现在,在数字微流体10、11、12上已经证明了一系列应用,因此,有很多例子可用于教育环境。特别是,沿着低成本,自己做的数字微流体,阿卜杜勒加瓦德和惠勒以前曾报告低成本,快速原型的数字微流体13,14。福贝尔等人还报告DropBot为开源数字微流体控制系统15。Yafia等人还报告了基于3D打印部件和小型手机16的便携式数字微流体。阿里斯塔和高登兹还开发了电池供电的 OpenDrop 平台,该平台基于场效应晶体管阵列和直流执行17

在这里,我们展示了一个基于商业来源的印刷电路板 (PCB) 的数字微流体教育套件,使用户能够组装并获得数字微流体的实践体验 (图 1)。从数字设计文件创建多氯联苯的收费服务是广泛的,因此,我们认为,只要数字设计文件可以共享,这是一个可行的低成本教育解决方案。精心选择组件和系统设计,以简化装配过程,并与用户的直观界面。因此,使用单板配置而不是双板配置,以避免需要顶板。组件和测试化学品都需要易于获得。例如,超市的食品包装用作我们工具包中的绝缘体。

为了证明我们的试剂盒的可行性,我们建议基于发光的化学发光进行特定的化学实验,并提供该协议。希望对化疗的视觉观察能激发学生的活力和兴奋。发光醇是一种在与H2O 2等氧化剂混合时表现出蓝色光泽的化学物质,通常用于法医检测血液18。在我们的实验室环境中,铁氰化钾是催化剂。发光醇与氢氧化物离子有反应,形成电化。随后,电离物与过氧化氢中的氧气发生反应,形成5-薄荷酸,电子处于兴奋状态,电子从兴奋状态放松到地面状态,导致光子在蓝光爆发时可见。

我们还报告了使用智能手机的荧光成像实验,以演示发光二极管 (LED) 作为激发光源的集成。最后,液滴蒸发是微流体中的一个问题,但很少得到解决。(从打开的基板 3 在 1 小时内丢失1μL 的水滴。我们使用基于高频压子传感器的雾化器将水转化为细雾。这创造了一个潮湿的环境,以防止液滴蒸发,并演示长期(~1小时)水滴激活。

Figure 1
图1:EWOD 设置的原理图( a) 用于为 EWOD 电极提供控制序列的微控制器。此外,湿度也得到控制。(b) 多氯联苯布局的原理图。标记了用于荧光成像的电极、LED、电阻器和场效应晶体管 (FET)。还显示了 1 厘米的尺度栏。请单击此处查看此图的更大版本。

Figure 2
2:工具包的顶部视图。 微控制器板、高压供应板、EWOD 多氯联苯、湿度传感器和雾化器均贴有标签。请单击此处查看此图的更大版本。

Subscription Required. Please recommend JoVE to your librarian.

Protocol

1) 组装数字微流体套件

  1. 根据 图 1b中的示意图,将表面安装电阻器、晶体管和发光二极管焊到多氯联苯板上。
  2. 将高压电源板的输出与带焊接部件的多氯联苯板连接起来(图2补充图1)。
  3. 将电池连接到电压助推器板,将电压从 6 V 提高到 12 V(图 2辅助图 1)。
  4. 将高压供应板连接到电压助推板,将电压从 12 V 提高到 230 V(图 2补充图 1)。
  5. 将湿度传感器连接到微控制器板。将超声波压电雾化器和雾化器驱动板连接到微控制器板(图2补充图1)。
  6. 将整个装配放入尺寸为 23 厘米 x 20.5 厘米 x 6 厘米的丙烯酸外壳中。
  7. 打开带有代码(补充代码)的微控制器,并使用数字多米测量 EWOD 电极的电压,以确保输出电压为 ~230 V. 调整高压供应板的可变电阻器,使输出电压为 ~230 V(补充图 2)。

2) 在电极阵列上准备绝缘体

  1. 戴上干净的亚硝酸盐手套。使用微皮在电极区域上涂抹约 10 微升的 5 cSt 硅油,并用手指均匀地将硅油涂抹在电极区域上。请注意,硅油作为电极和食品包装绝缘体之间的填充物,并避免任何气囊。
  2. 切开一块尺寸约为 2.5 厘米 x 4 厘米的食品包装,放在电极顶部。使用微皮在电极区域上涂抹约 10 μL 的 5 cSt 硅油,并用手指均匀地铺开硅油。请注意,硅胶油作为绝缘体顶部的疏水层。

3) 基于发光的切米发光实验

  1. 将 0.25 克发光醇和 1.6 克 NaOH 混合在 25 mL 的除离子水中,用玻璃搅拌器搅拌器搅拌,以获得溶液。
  2. 将前一步的 20 mL 溶液与 20 mL 的 3% 过氧化氢混合。
  3. 使用微皮将上一步的发光溶液中的 2-5μL 放置在目标电极上。
  4. 使用微皮将 10 μL 的 0.1% w/w 铁氰化钾放在电极上。请注意,这是要移动用于电润湿的液滴。
  5. 打开微控制器移动铁氰化钾的10μL液滴,与发光醇合并。

4) 荧光成像实验

  1. 切一块半透明胶带,尺寸为 ~1 厘米 x 1 厘米。将半透明胶带放在激发发光二极管和 EWOD 电极之间。
  2. 用胶带将发射彩色玻璃滤镜连接到智能手机的摄像头上。
  3. 将2.5毫克氟西辛异氰酸酯混合在液态乙醇(3%w/w)溶液中。
  4. 其中一个电极上上一步的溶液的派珀特~10 μL。
  5. 打开微控制器。
  6. 使用智能手机录制液滴激活的视频。

5) 使用超声波雾化器进行长期液滴激活实验

  1. 将 1 mL 的水放在超声波雾化器上。请注意,编写该代码是为了使用阈值反馈算法保持湿度水平超过 90%。
  2. 放置带微皮带的 10 μL 液滴。打开微控制器,立即关闭外壳的盖子。
  3. 等待~1小时。目视检查液滴激活。

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

液滴激活是用智能手机记录的。化学发光和荧光成像的代表性结果显示在 图3图4中。对于化学发光实验,10 μL铁氰化物的液滴被激活移动,并与目标电极上预先沉积的2μL液滴混合,如 图3所示。连续运动之间的时间段设置为 4 s,速度足够慢,便于观察。请注意,通过将发光溶液(与过氧化氢)与铁氰化钾混合而引起的蓝光爆发,即使在环境光下也能用肉眼看到。对于 图4中显示的荧光成像,实验需要在黑暗中进行。半透明胶带充当扩散器,均匀地将激发光分配到液滴上。荧光发出的光用安装在智能手机摄像头上的低成本排放过滤器进行过滤。这种成像方案比典型的台式荧光显微镜中通常的二色镜方案更简单。对于长期(~1小时)实验,可以观察到成功的液滴激活,如 图5a所示。 图5b 显示了超声波雾化器作用下具有代表性的湿度数据。我们还测量有雾化器和没有雾化器的液滴直径。如果没有雾化器,液滴直径从 4.0 mm 缩小到 2.2 mm,在室温和环境相对湿度为 57% 的情况下,体积从 10 μL 变为 6 μL。在雾化器下,液滴直径从 4 mm 缩小到 3.1 mm,在室温和环境相对湿度下,体积从 10 μL 变为 8 μL = 90%。

Figure 3
3:液滴运动和化学发光的快照。 在 t = 12 s 时,将发光醇与铁氰化钾混合可产生可见的蓝光爆发。还显示了 1 厘米的尺度栏。 请单击此处查看此图的更大版本。

Figure 4
4:与荧光成像能力集成LED 是激发的光源。半透明透明的办公室胶带充当光扩散器。排放过滤器直接连接到智能手机摄像头。(b) 含荧光素异氰酸酯的液滴的荧光成像。请单击此处查看此图的更大版本。

Figure 5
5:在湿度控制下用超声波雾化器进行液滴激活。 还显示了 1 厘米的尺度栏。(b) 超声波雾化器作用下的相对湿度与时间。箭头表示由于阈值算法,雾化器已关闭。相对湿度的阈值设置为 90%。请单击此处查看此图的更大版本。

补充图1:布线示意图。微控制器和高压电源板由电池供电。所有操作均由微型控制板编排。雾化器由驱动板激活。请单击此处下载此文件。

补充图2:高压开关电路。使用带电阻器的高压金属氧化物半导体场效应晶体管 (MOSFET) 用于切换 EWOD 电极。请单击此处下载此文件。

补充表 1:我们工具包组件的成本估算。 晶体管、电阻器、发光二极管等组件的单位成本估计为 10 到 100 个组件的批量价格。成本不包括自定义丙烯酸外壳。 请单击此处下载此表。

补充代码:自定义脚本,使液滴运动和超声波雾化器的激活,以加湿液滴环境。请单击此处下载此文件。

Subscription Required. Please recommend JoVE to your librarian.

Discussion

此处描述的程序允许读卡器组装和测试工作 EWOD 系统以进行液滴激活,并获得微流体的动手经验。我们故意避免昂贵的组件和化学样品。目前,一个套件可以建造约130美元,最昂贵的组件是光学彩色玻璃荧光成像和微控制器,不包括自定义丙烯酸外壳(补充表1)。对于这样的成本,还包括荧光成像能力和基于雾化器的主动湿度环境控制。(一个典型的荧光显微镜的成本超过1,500~19美元,甚至一个低成本的数字荧光显微镜的成本为300美元。这些低成本使我们的工具包在大规模教育环境中变得实用。相比之下,Dropbot 目前的价格为 5,00020美元,OpenDrop 平台的成本为 1,0002 美元表 1中提供了这些平台的比较摘要。

Dropbot、开放式滴和教育套件之间的比较
滴机器人 开放式滴片 教育工具包
电极基板 玻璃基板 多氯联苯 多氯联苯
涂层技术 真空沉积 薄膜和油 食品包装和油
激活信号 交流(10kHz,典型) 直流 直流
驱动电子 HV 放大器和继电器阵列 场效应晶体管 场效应晶体管
加湿环境 没有 没有 是的。带雾化器
成像能力 外部微镜 外部微镜 是的。使用智能手机
成本 $5,000 $1,000 $100

表1:Dropbot、开放式滴答声和我们的教育工具包之间的比较。

为了评估使用我们的教育工具包的可行性,我们征集了13名具有各种背景的本科生。他们的专业包括物理、生物学、化学工程、医学、材料科学、机械工程和电气工程。我们特意避免学生过度来自电气工程,只安排一名电气工程专业的学生。我们已指示他们在 2 小时内将组件焊接到 PCB,并最终在我们的套件上测试液滴激活。除了一个来自电气工程的学生之外,没有一个学生有焊接的经验。最后,我们收集统计数据。成功率为62%。我们发现焊接表面安装部件是套件成功组装的瓶颈过程。一般准则如下。芬琴科指出,工具或实验介于"自己行动"边界和黑匣子边界之间。随着学生一方工程经验的增加,例如,从电气工程背景来看,更多的实验室课程可以采取自己做的味道。然而,缺乏经验的学生在电子技能方面,如化学,生物学和生物化学,可以获得一个好处的黑匣子端的光谱与教官预先组装的工具包。

作为参考,我们还尝试描述可用于液体液滴的参数范围。在尺寸方面,我们测试了最大和最小液体体积分别为 16 μL 和 8 μL,使用的名义液体体积为 10 μL。我们已将液体限制在水溶液中,避免有机溶剂,以避免聚合物食品包装绝缘体的腐蚀。我们还挑选了常用的液体系统,如食糖和盐,以涵盖一系列参数,如离子浓度、PH 值、密度和粘度。结果总结为 表2。在这些测试中,我们选择了甘油水混合物作为测试液滴最大粘度的方法,同时保持其他物理特性,如表面张力相对恒定。我们确定甘油的最大重量百分比和相应的粘度为~40%和3.5 cp21。最大工作离子浓度高达1M,用氯化钠进行测试。PH 值通过醋酸、柠檬酸和 KOH 溶液进行测试。

液体系统 关键参数 工作范围
甘油水混合物 粘性 甘油40%瓦特或3.5 cps
水中的蔗糖 密度 高达60%瓦特
柠檬酸在水中稀释 PH 值 低至 PH+3
醋酸 PH 值 低至 PH=4
科赫 PH 值 高达PH=11
氯化钠 离子浓缩 10米到1米

表2:在我们的工具包上测试的液体系统、参数和工作范围的范围。

在这里,我们简要讨论了液滴激活所涉及的物理原理。利用机电衍生物,可以根据系统中存储的能量容量从该能量术语的分化中得出驱动力作为频率和液滴位置的函数。每个设备几何/液体组合21可计算临界频率 fc。低于此频率,估计力降低到热力学方法预测的力。在这种制度下,在液滴上起作用的力产生于在三相接触线附近积累的电荷,这些电荷被静电地拉向被激活的电极。在临界频率之上,液体介电力占主导地位,将液滴拉向激活的电极。在我们的实验中,我们使用直流执行,因此操作低于这个临界频率,因此三相接触线静电拉向被激活的电极。

总之,整个实验旨在让读者亲身体验数字微流体。更具体地说,该套件允许学生学习光学、电子和流体学,因此这一方面适合高级电气工程和机械工程的任何实验室课程。此外,特定的化学发光实验可用于高级化学或化学工程实验课程。虽然此处描述的实验是真实场景的简化版本,但它可以直接扩展到其他实验。例如,可以将试卷套件耦合,并将液滴移动到纸张上进行吸收。我们还可以轻松地将微处理器与其他交互式 I/O 设备相结合,以提供更复杂的数字控制和可编程性。我们相信,这里的协议也可以有利于非专业爱好者学习和应用电子学,以进一步推进他们的领域的知识。

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

作者没有什么可透露的。

Acknowledgments

Y. T. Y. 谨根据赠款编号 MOST 107-2621-M-007-001-MY3 和国家清华大学赠款编号 109Q2702E1,感谢科技部的资助支持。来自伊丹兹集团(https://en-author-services.edanzgroup.com/ac)的马克·库尔班编辑了这份手稿的草稿。

Materials

Name Company Catalog Number Comments
Acrylic enclosure LOCAL vendor 23cm x 20.5 cm x 6cm
Ardunion Uno Arduino UNO microcontroller board
acetic acid Sigma Alrich 695092-100ML
Breadboard MCIGICM 400tie 4 cm x 7 cm, 400 Points Solderless Breadboard, a pack of 4
BSP89 H6327 Infineon MOSFET  Mouser 726-BSP89H6327 drain soure breakdown voltage 240V,on resistance 4.2 ohm
citrid acid sigma Alrich 251275-100G
Color glass filter  Thorlabs FGL 530 color glass filter for fluorescent imaging
DHT11 temperature & humidity sensor adafruit
Digital multimeter  Fluke 17B
Fluorescein isothiocyanate isomer I sigma Alrich F7250-50MG 50 mg price, fluorescent imaging
Glycerol Sigma Alrich G9012-500ML
High voltage power supply for Nixe tube Vaorwne NCH6100HV High voltage power max dc 235V
LM2596 voltage booster circuit boost voltage from 5V to 12 V
Luminol Sigma Alrich 123072-5G 5 g for $110
Pippet Thermal Fisher 1- 10 ul
Printed circuit board  Local vender 10 piece for $60
Plastic food wrap Kirkland Stretch-tite  food wrap Plastic food wrap
Potassium ferricynide Merck 104982 1 kg
1N Potassium hydroxide solution (1 mol/l)  Scharlau  1 Liter
Clear Office tape 3mm 3M Scotch semi-transparent, used as diffuser for illumination
salt Great Value Iodized Salt 6 oz for $7 salt from supermarket
Silicone oil (5Cst) Sigma Alrich 317667-250ML top hydrophobic layer & filling layer between electrode and insulator
sucrose table sugar  from any supermarket, 6 dollar per pound
Surface mount blue LED oznium 3528 Oznium 20 Pieces of PLCC-2 Surface Mount LEDs, 3528 Size SMD SMT LED - Blue
Surface mount resistor 180k Ohm Balance World Inc 3mm x 6 mm 1watt
Surface mount resistor 510Ohm Balance World Inc bias resistor for LED, 3mmx6mm 1watt
Water atomizer Grove  operating frequency 100 kHz  supply votage 5V max 2W  The kit comes with ultrasonic transducer
high voltage transistor

DOWNLOAD MATERIALS LIST

References

  1. Convery, N., Gadegaard, N. 30 years of microfluidics. Micro and Nano Engineering. 2, 76-91 (2019).
  2. Rackus, D. G., Ridel-Kruse, I. H., Pamme, N. Learning on a chip: Microfluidics for formal and informal science education. Biomicrofluidics. 13, 041501 (2019).
  3. Legge, C. H. Chemistry under the microscope-Lab on a chip technologies. Journal of Chemical Education. 79, 173 (2002).
  4. Fintschenko, Y. Education: a modular approach to microfluidics in the teaching laboratory. Lab On A Chip. 11, 3394 (2011).
  5. Mugele, F., Baret, J. -C. Electrowetting: from basics to applications. Journal of Physics: Condensed Matter. 17, 705-774 (2005).
  6. Lippmann, G. Relations entre les phenomenes electriques et capillary. Ann. Chim. Phys. 6, 494 (1875).
  7. Berge, B. Electrocapillarite et mouillge de films isolant par l'eau. C. R. Acad. Sci. II. 317, 157 (1993).
  8. Pollack, M. G., Fair, R. B., Shenderov, A. D. Electrowetting-based actuation of liquid droplets for microfluidics applications. Applied Physics Letters. 77, 1725 (2000).
  9. Lee, J., Kim, C. J. Surface-tension-driven microactuation based on continuous electrowetting. Journal of Microelectromechanical Systems. 9 (2), 171 (2000).
  10. Choi, K., Ng, A. H. C., Fobel, R., Wheeler, A. R. Digital Microfluidics. Annual Review of Analalytical Chemistry. 5, 413-440 (2012).
  11. Jebrail, M. J., Wheeler, A. R. Let's get digital: digitizing chemical biology with microfluidics. Current Opinion in Chemical Biology. 14, 574-581 (2000).
  12. Pollack, M. G., Pamula, V. K., Srinivasan, V., Eckhardt, A. E. 2011. Applications of electrowetting-based digital microfluidics in clinical diagnostics. Expert Review of Molecular Diagnostics. 11, 393-407 (2011).
  13. Abdelgawad, M., Wheeler, A. R. Rapid prototyping in copper substrates for digital microfluidics. Advanced Materials. 19 (1), 133-137 (2007).
  14. Abdelgawad, M., Wheeler, A. R. Low-cost, rapid-prototyping of digital microfluidics devices. Microfluidics and Nanofluidics. 4, 349-355 (2008).
  15. Fobel, R., Fobel, C., Wheeler, A. R. DropBot: an open-source digital microfluidic control system with precise control of electrostatic driving force and instantaneous drop velocity measurement. Applied Physics Letters. 102, 193513 (2013).
  16. Yafia, M., Ahmadi, A., Hoorfar, M., Najjaran, H. Ultra-portable smartphone controlled integrated digital microfluidic system in a 3D-printed modular assembly. Micromachines. 6 (9), 1289-1305 (2015).
  17. Alistar, M., Gaudenz, U. OpenDrop: an integrated do-it-yourself platform for personal use of biochips. Bioengineering. 4 (2), 45 (2017).
  18. Khan, P., et al. Luminol-based chemiluminescent signals: clinical and non-clinical application and future uses. Applied Biochemistry and Biotechnology. 173 (2), 333-355 (2014).
  19. Agresti, J. J., et al. Ultrahigh-throughput screening in drop-based microfluidics for directed evolution. Proceedings of the National Academy of Sciences of the United States of America. 107 (9), 4004-4009 (2010).
  20. Microfluidics. , Available from: https://microfluidics.utoronto.ca/dropbot/ (2020).
  21. Busnel, J. M., et al. Evaluation of capillary isoelectric focusing in glycerol-water media with a view to hydrophobic protein applications. Electrophoresis. 26, 3369-3379 (2005).
  22. Chatterjee, D., Shepherd, H., Garrell, R. L. Electromechanical model for actuating liquids in a two plate droplet microfluidic device. Lab On A Chip. 9, 1219-1229 (2009).

Tags

工程,第170期,电化,数字微流体,社区驱动的微流体,化学教育,芯片实验室,教育工具
基于数字微流体的多功能套件,用于科学教育
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Guo, Y. H., Lee, C. H., Yang, Y. T.More

Guo, Y. H., Lee, C. H., Yang, Y. T. A Versatile Kit Based on Digital Microfluidics Droplet Actuation for Science Education. J. Vis. Exp. (170), e61978, doi:10.3791/61978 (2021).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter