Summary

Justering af optisk kohærenstomografi i synligt lys med konfokale billeder af samme musenethinde

Published: June 30, 2023
doi:

Summary

Denne protokol skitserer trinnene til justering af in vivo optisk kohærenstomografi i synligt lys (vis-OCTF) billeder med ex vivo konfokale billeder af samme musenethinde med det formål at verificere den observerede retinale ganglioncelleaxonbundtmorfologi i in vivo-billederne.

Abstract

I de senere år er in vivo retinal billeddannelse, som giver ikke-invasiv, realtid og langsgående information om biologiske systemer og processer, i stigende grad blevet anvendt til at opnå en objektiv vurdering af neurale skader i øjensygdomme. Ex vivo konfokal billeddannelse af den samme nethinden er ofte nødvendig for at validere in vivo fund, især i dyreforsøg. I denne undersøgelse demonstrerede vi en metode til at justere et ex vivo konfokal billede af musens nethinde med dets in vivo-billeder . En ny klinisk klar billeddannelsesteknologi kaldet synligt lys optisk kohærenstomografi fibergrafi (vis-OCTF) blev anvendt til at erhverve in vivo-billeder af musens nethinden. Vi udførte derefter den konfokale billeddannelse af den samme nethinde som “guldstandarden” for at validere in vivo vis-OCTF-billederne. Denne undersøgelse muliggør ikke kun yderligere undersøgelse af de molekylære og cellulære mekanismer, men etablerer også et fundament for en følsom og objektiv evaluering af neurale skader in vivo.

Introduction

Retinale ganglionceller (RGC’er) spiller en kritisk rolle i visuel informationsbehandling, modtager synaptiske input gennem deres dendritiske træer i det indre plexiformlag (IPL) og transmitterer informationen via deres axoner i retinale nervefiberlag (RNFL) til hjernen 1,2,3,4. Ved syge tilstande som glaukom kan tidlig RGC-degeneration resultere i subtile ændringer i RNFL, ganglioncellelaget (GCL), IPL og synsnerven hos både patienter og gnavermodeller 5,6,7,8,9. Tidlig påvisning af disse morfologiske ændringer i RGC’er er derfor afgørende for rettidig indgriben for at forhindre RGC og synstab.

Vi har for nylig udviklet en ny klinisk klar billeddannelsesteknologi kaldet synligt lys optisk kohærenstomografi (vis-OCT) for at tilfredsstille behovet for in vivo-overvågning af RGC-skader. Vis-OCT forbedrede den aksiale opløsning og nåede 1,3 μm i nethinden10,11, hvilket muliggør visualisering af individuelle RGC-axonbundter i RNFL. Derefter blev vis-OCT-fibergrafi (vis-OCTF) etableret for at spore og kvantificere RGC-skader på enkeltaxonbundtniveau hos mus11,12,13. Imidlertid er ex vivo konfokal billeddannelse af den samme nethinden som guldstandarden ofte nødvendig for at validere in vivo-resultaterne. Derfor vil denne undersøgelse demonstrere, hvordan man tilpasser in vivo-billeder erhvervet af vis-OCTF med ex vivo-konfokale billeder af den samme musenethinde. Protokollen har til formål at validere in vivo-resultaterne ved ex vivo konfokal billeddannelse og etablere et grundlag for at undersøge de molekylære og cellulære ændringer, der ligger til grund for RGC-skader under syge tilstande.

Protocol

Alle dyreforsøg blev godkendt af Institutional Animal Care and Use Committee ved University of Virginia og i overensstemmelse med retningslinjen om brug af dyr fra National Institute of Health (NIH). Se materialefortegnelsen for detaljer vedrørende alle materialer, reagenser og instrumenter, der anvendes i denne protokol. 1. In vivo i forhold til OLT-billeddannelse Forholdet mellem de oversøiske lande og territorier (OLT)Tag bille…

Representative Results

Det sammensatte vis-OCT-fibergram sammenlignes med det tilsvarende konfokale billede af fladmonteret nethindeimmunfarvet med Tuj-1 for RGC-axoner (figur 1D, toppanel). Axonbundter afbildet af vis-OCTF kan matches med de Tu-j1-mærkede axonbundter på det konfokale billede. Blodkar udviser normalt skelnelige forgreningsstrukturer sammenlignet med omgivende axonbundter i fibergrambilleder, som kan matches med ICAM-2-mærkede blodkar på det konfokale billede (figur 1D</str…

Discussion

Der er to trin i denne protokol, der kræver opmærksomhed. For det første er det nødvendigt at sikre, at dyret er under dyb anæstesi, og at deres øjne er fuldt udvidede inden vis-OCT-billeddannelse. Hvis musene ikke bedøves tilstrækkeligt, kan deres hurtige vejrtrækning føre til ustabile bevægelser af ansigtsbillederne , hvilket kan påvirke fibergrammets kvalitet negativt. Desuden kan utilstrækkelig udvidelse også have en negativ indvirkning på billedkvaliteten, da iris kan blokere lyset og forhind…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Denne undersøgelse er støttet af Glaucoma Research Foundation Shaffer Grant, 4-CA Cavalier Collaborative Award, R01EY029121, R01EY035088 og Knights Templar Eye Foundation.

Materials

Equipment
Halo 100 Opticent Health, Evanston, IL
Zeiss LSM800 microscope Carl Zeiss
Drugs and antibodies
4% paraformaldehyde (PFA) Santz Cruz Biotechnology, SC-281692 1-2 drops
Bovine serum albumin powder Fisher Scientific, BP9706-100 1:10
Donkey anti Mouse Alexa Fluor 488 dye Thermo Fisher Scientific, Cat# A-21202 1:1,000
Donkey anti rat Alexa Fluor 594 dye Thermo Fisher Scientific, Cat# A-21209 1:1,000
Euthasol (a mixture of pentobarbital sodium (390 mg/mL) and phenytoin sodium (50 mg/mL)) Covetrus, NDC 11695-4860-1 15.6 mg/mL
Ketamine Covetrus, NADA043304 114 mg/kg
Mouse anti-Tuj1 A gift from Anthony J. Spano, University of Virginia 1:200
Normal donkey serum(NDS) Millipore Sigma, S30-100 mL 1:100
Phosphate-buffered saline (PBS, 10x), pH 7.4
(Contains 1370 mM NaCl, 27 mM KCl, 80 mM Na2HPO4, and 20 mM KH2PO4)
Thermo Fisher Scientific, Cat# J62036.K3 1:10
Rat anti-ICAM-2 BD Pharmingen, Cat#553325 1:500
Tropicamide drops  Covetrus, NDC17478-102-12
Triton X-100
(Reagent Grade)
VWR, CAS: 9002-93-1 1:20
Vectashield mounting medium Vector Laboratories Inc. H2000-10
Xylazine Covetrus, NDC59399-110-20 17 mg/kg

References

  1. Sernagor, E., Eglen, S. J., Wong, R. O. Development of retinal ganglion cell structure and function. Progress in Retinal and Eye Research. 20 (2), 139-174 (2001).
  2. Sanes, J. R., Masland, R. H. The types of retinal ganglion cells: current status and implications for neuronal classification. Annual Review of Neuroscience. 38, 221-246 (2015).
  3. Seabrook, T. A., Burbridge, T. J., Crair, M. C., Huberman, A. D. Architecture, function, and assembly of the mouse visual system. Annual Review of Neuroscience. 40, 499-538 (2017).
  4. Cang, J., Savier, E., Barchini, J., Liu, X. Visual function, organization, and development of the mouse superior colliculus. Annual Review of Vision Science. 4, 239-262 (2018).
  5. Quigley, H. A. Understanding glaucomatous optic neuropathy: the synergy between clinical observation and investigation. Annual Review of Vision Science. 2, 235-254 (2016).
  6. Whitmore, A. V., Libby, R. T., John, S. W. Glaucoma: thinking in new ways-a role for autonomous axonal self-destruction and other compartmentalised processes. Progress in Retinal and Eye Research. 24 (6), 639-662 (2005).
  7. Syc-Mazurek, S. B., Libby, R. T. Axon injury signaling and compartmentalized injury response in glaucoma. Progress in Retinal and Eye Research. 73, 100769 (2019).
  8. Puyang, Z., Chen, H., Liu, X. Subtype-dependent morphological and functional degeneration of retinal ganglion cells in mouse models of experimental glaucoma. Journal of Nature and Science. 1 (5), (2015).
  9. Tatham, A. J., Medeiros, F. A. Detecting structural progression in glaucoma with optical coherence tomography. Ophthalmology. 124, S57-S65 (2017).
  10. Shu, X., Beckmann, L., Zhang, H. Visible-light optical coherence tomography: a review. Journal of Biomedical Optics. 22 (12), 1-14 (2017).
  11. Miller, D. A., et al. Visible-light optical coherence tomography fibergraphy for quantitative imaging of retinal ganglion cell axon bundles. Translational Vision Science and Technology. 9 (11), (2020).
  12. Beckmann, L., et al. In vivo imaging of the inner retinal layer structure in mice after eye-opening using visible-light optical coherence tomography. Experimental Eye Research. 211, 108756 (2021).
  13. Grannonico, M., et al. Global and regional damages in retinal ganglion cell axon bundles monitored non-invasively by visible-light optical coherence tomography fibergraphy. Journal of Neuroscience. 41 (49), 10179-10193 (2021).
  14. Allen-Worthington, K. H., Brice, A. K., Marx, J. O., Hankenson, F. C. Intraperitoneal Injection of Ethanol for the Euthanasia of Laboratory Mice (Mus musculus) and Rats (Rattus norvegicus). J Am Assoc Lab Anim Sci. 54 (6), 769-778 (2015).
  15. Boivin, G. P., Bottomley, M. A., Schiml, P. A., Goss, L., Grobe, N. Physiologic, Behavioral, and Histologic Responses to Various Euthanasia Methods in C57BL/6NTac Male Mice. J Am Assoc Lab Anim Sci. 56 (1), 69-78 (2017).
  16. Chen, H., et al. Progressive degeneration of retinal and superior collicular functions in mice with sustained ocular hypertension. Investigative Ophthalmology and Visual Science. 56 (3), 1971-1984 (2015).
  17. Feng, L., Chen, H., Suyeoka, G., Liu, X. A laser-induced mouse model of chronic ocular hypertension to characterize visual defects. Journal of Visualized Experiments: JoVE. 78 (78), (2013).
  18. Gao, J., et al. Differential effects of experimental glaucoma on intrinsically photosensitive retinal ganglion cells in mice. Journal of Comparative Neurology. 530 (9), 1494-1506 (2022).
  19. Thomson, B. R., et al. Angiopoietin-1 knockout mice as a genetic model of open-angle glaucoma. Translational Vision Science and Technology. 9 (4), (2020).
  20. Feng, L., et al. Sustained ocular hypertension induces dendritic degeneration of mouse retinal ganglion cells that depends on cell type and location. Investigative Ophthalmology and Visual Science. 54 (2), 1106-1117 (2013).
  21. Grannonico, M., et al. Longitudinal analysis of retinal ganglion cell damage at individual axon bundle level in mice using visible-light optical coherence tomography fibergraphy. Translational Vision Science and Technology. 12 (5), (2023).
check_url/65237?article_type=t

Play Video

Cite This Article
Chang, S., Xu, W., Fan, W., McDaniel, J. A., Grannonico, M., Miller, D. A., Liu, M., Zhang, H. F., Liu, X. Alignment of Visible-Light Optical Coherence Tomography Fibergrams with Confocal Images of the Same Mouse Retina. J. Vis. Exp. (196), e65237, doi:10.3791/65237 (2023).

View Video