Automated Rat Single-Pellet Reaching with 3-Dimensional Reconstruction of Paw and Digit Trajectories

This article has been accepted and is currently in production

Abstract

Rodent skilled reaching is commonly used to study dexterous skills, but requires significant time and effort to implement the task and analyze the behavior. Several automated versions of skilled reaching have been developed recently. Here, we describe a version that automatically presents pellets to rats while recording high-definition video from multiple angles at high frame rates (300 fps). The paw and individual digits are tracked with DeepLabCut, a machine learning algorithm for markerless pose estimation. This system can also be synchronized with physiological recordings, or be used to trigger physiologic interventions (e.g., electrical or optical stimulation).