JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Strategies to prevent biofilm-based tympanostomy tube infections.
Int. J. Pediatr. Otorhinolaryngol.
PUBLISHED: 03-20-2014
Show Abstract
Hide Abstract
To review the potential contributory role of biofilms to post-tympanstomy tube otorrhea and plugging as well as the available interventions currently utilized to prevent biofilm formation on tympanostomy tubes.
Related JoVE Video
Next science wound gel technology, a novel agent that inhibits biofilm development by gram-positive and gram-negative wound pathogens.
Antimicrob. Agents Chemother.
PUBLISHED: 03-17-2014
Show Abstract
Hide Abstract
Loss of the skin barrier facilitates the colonization of underlying tissues with various bacteria, where they form biofilms that protect them from antibiotics and host responses. Such wounds then become chronically infected. Topical antimicrobials are a major component of chronic wound therapy, yet currently available topical antimicrobials vary in their effectiveness on biofilm-forming pathogens. In this study, we evaluated the efficacy of Next Science wound gel technology (NxtSc), a novel topical agent designed to kill planktonic bacteria, penetrate biofilms, and kill the bacteria within. In vitro quantitative analysis, using strains isolated from wounds, showed that NxtSc inhibited biofilm development by Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, Acinetobacter baumannii, and Klebsiella pneumoniae by inhibiting bacterial growth. The gel formulation NxtSc-G5, when applied to biofilms preformed by these pathogens, reduced the numbers of bacteria present by 7 to 8 log10 CFU/disc or CFU/g. In vivo, NxtSc-G5 prevented biofilm formation for 72 h when applied at the time of wounding and infection and eliminated biofilm infection when applied 24 h after wounding and infection. Storage of NxtSc-G5 at room temperature for 9 months did not diminish its efficacy. These results establish that NxtSc is efficacious in vitro and in vivo in preventing infection and biofilm development by different wound pathogens when applied immediately and in eliminating biofilm infection already established by these pathogens. This novel antimicrobial agent, which is nontoxic and has a usefully long shelf life, shows promise as an effective agent for the prevention and treatment of biofilm-related infections.
Related JoVE Video
Mucin inhibits Pseudomonas aeruginosa biofilm formation by significantly enhancing twitching motility.
Can. J. Microbiol.
PUBLISHED: 01-24-2014
Show Abstract
Hide Abstract
In Pseudomonas aeruginosa, type IV pili (TFP)-dependent twitching motility is required for development of surface-attached biofilm (SABF), yet excessive twitching motility is detrimental once SABF is established. In this study, we show that mucin significantly enhanced twitching motility and decreased SABF formation in strain PAO1 and other P. aeruginosa strains in a concentration-dependent manner. Mucin also disrupted partially established SABF. Our analyses revealed that mucin increased the amount of surface pilin and enhanced transcription of the pilin structural gene pilA. Mucin failed to enhance twitching motility in P. aeruginosa mutants defective in genes within the pilin biogenesis operons pilGHI/pilJK-chpA-E. Furthermore, mucin did not enhance twitching motility nor reduce biofilm development by chelating iron. We also examined the role of the virulence factor regulator Vfr in the effect of mucin. In the presence or absence of mucin, PAO?vfr produced a significantly reduced SABF. However, mucin partially complemented the twitching motility defect of PAO?vfr. These results suggest that mucin interferes with SABF formation at specific concentrations by enhancing TFP synthesis and twitching motility, that this effect, which is iron-independent, requires functional Vfr, and only part of the Vfr-dependent effect of mucin on SABF development occurs through twitching motility.
Related JoVE Video
Serum influences the expression of Pseudomonas aeruginosa quorum-sensing genes and QS-controlled virulence genes during early and late stages of growth.
Microbiologyopen
PUBLISHED: 01-18-2014
Show Abstract
Hide Abstract
In response to diverse environmental stimuli at different infection sites, Pseudomonas aeruginosa, a serious nosocomial pathogen, coordinates the production of different virulence factors through a complicated network of the hierarchical quorum-sensing (QS) systems including the las, rhl, and the 2-alkyl-4-quinolone-related QS systems. We recently showed that at early stages of growth serum alters the expression of numerous P. aeruginosa genes. In this study, we utilized transcriptional analysis and enzyme assays to examine the effect of serum on the QS and QS-controlled virulence factors during early and late phases of growth of the P. aeruginosa strain PAO1. At early phase, serum repressed the transcription of lasI, rhlI, and pqsA but not lasR or rhlR. However, at late phase, serum enhanced the expression of all QS genes. Serum produced a similar effect on the synthesis of the autoinducers 3OC12-HSL, C4-HSL, and HHQ/PQS. Additionally, serum repressed the expression of several QS-controlled genes in the early phase, but enhanced them in the late phase. Furthermore, serum influenced the expression of different QS-positive (vqsR, gacA, and vfr) as well as QS-negative (rpoN, qscR, mvaT, and rsmA) regulatory genes at either early or late phases of growth. However, with the exception of PAO?vfr, we detected comparable levels of lasI/lasR expression in PAO1 and PAO1 mutants defective in these regulatory genes. At late stationary phase, serum failed to enhance lasI/lasR expression in PAO?vfr. These results suggest that depending on the phase of growth, serum differentially influenced the expression of P. aeruginosa QS and QS-controlled virulence genes. In late phase, serum enhanced the expression of las genes through vfr.
Related JoVE Video
Biofilm blocking sesquiterpenes from Teucrium polium.
Phytochemistry
PUBLISHED: 01-10-2014
Show Abstract
Hide Abstract
The chemical composition and antibacterial activity of Teucrium polium L. (Lamiaceae) were assessed; sixteen compounds were isolated from a CH2Cl2/MeOH extract of the aerial parts of the plant including four sesquiterpenes 4?,5?-epoxy-7?H-germacr-10(14)-en-6?-ol-1-one, 4?,5?-epoxy-7?H-germacr-10(14)-en,1?-hydroperoxyl,6?-ol, 4?,5?-epoxy-7?H-germacr-10(14)-en,1?-hydroperoxyl,6?-ol and 4?,5?-epoxy-7?H-germacr-10(14)-en,1?-hydroperoxyl,6?-ol, together with seven known sesquiterpenes, one known iridoid glycoside, two known flavonoids, and one known phenylpropanoid glycoside. Structures were elucidated on the basis of spectroscopic (UV, (1)H and (13)C NMR) data, as well as two-dimensional NMR ((1)H-(1)H COSY, HMQC, NOESY and HMBC), and ESI-MS analysis. The relative stereochemistry of the ketone was established by X-ray crystallography, while its absolute configuration was attained by a modified Mosher's method. Antibacterial activity of the crude extract, as well as with four of the isolated metabolites, was observed with Staphylococcus aureus anti-biofilm activity in the low ?Mol range. Diverse sesquiterpene-skeleton structure and corresponding comprehensive enzyme capacity is discussed.
Related JoVE Video
Inhibition of Otopathogenic Biofilms by Organoselenium-Coated Tympanostomy Tubes.
JAMA Otolaryngol Head Neck Surg
PUBLISHED: 09-14-2013
Show Abstract
Hide Abstract
IMPORTANCE Tube occlusion and post-tympanostomy tube otorrhea (PTTO) are 2 major sequelae of tympanostomy tube placement. Plugging negates the function of the tympanostomy tubes and, along with chronic PTTO, can be financially burdensome owing to repeated surgical procedures and additional treatments. OBJECTIVE To investigate the effectiveness of an organoselenium (OSe) coating on Donaldson tympanostomy tubes in inhibiting biofilm formation on the tympanostomy tubes. DESIGN In vitro microbiologic study; all experiments were performed in a Texas Tech University Health Sciences Center basic sciences laboratory. INTERVENTIONS Inhibition of biofilm formation was investigated by incubating OSe-coated vs uncoated (control) tympanostomy tubes in a nutrient broth containing either Staphylococcus aureus (Sa) expressing green fluorescent protein (GFP), nontypeable Haemophilus influenzae (NTHi) expressing GFP, or Moraxella catarrhalis (Mc) for 48 hours at 37°C. All biofilms were quantified via colony-forming unit (CFU) assays. The Sa and NTHi biofilms were visualized using confocal laser-scanning microscopy (CLSM) and analyzed using the COMSTAT program. MAIN OUTCOMES AND MEASURES The CFU assays, CLSM, and COMSTAT analysis revealed that compared with uncoated control tympanostomy tubes, OSe-coated tympanostomy tubes are able to inhibit Sa, NTHi, and Mc biofilm formation. RESULTS The Sa and NTHi developed thick mature biofilms containing considerable biomass on uncoated tympanostomy tubes as determined by CLSM and COMSTAT analysis, while the OSe coating on the tympanostomy tubes drastically inhibited biofilm formation by Sa and NTHi. Quantitative CFU analysis revealed that this reduction in biofilm formation was significant, 6 logs for Sa (P?<?.001) and 4 logs for NTHi (P?=?.02). OSe coating also inhibited biofilm formation by Mc with a 4.5-log reduction (P?<?.001). CONCLUSIONS AND RELEVANCE The OSe coating is a potential long-lasting agent to prevent biofilm development on tympanostomy tubes by otopathogens.
Related JoVE Video
Characterization of the Pseudomonas aeruginosa metalloendopeptidase, Mep72, a member of the Vfr regulon.
BMC Microbiol.
PUBLISHED: 08-02-2013
Show Abstract
Hide Abstract
Pseudomonas aeruginosa Vfr (the virulence factor regulator) enhances P. aeruginosa virulence by positively regulating the expression of numerous virulence genes. A previous microarray analysis identified numerous genes positively regulated by Vfr in strain PAK, including the yet uncharacterized PA2782 and PA2783.
Related JoVE Video
The pvc operon regulates the expression of the Pseudomonas aeruginosa fimbrial chaperone/usher pathway (cup) genes.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
The Pseudomonas aeruginosa fimbrial structures encoded by the cup gene clusters (cupB and cupC) contribute to its attachment to abiotic surfaces and biofilm formation. The P. aeruginosa pvcABCD gene cluster encodes enzymes that synthesize a novel isonitrile functionalized cumarin, paerucumarin. Paerucumarin has already been characterized chemically, but this is the first report elucidating its role in bacterial biology. We examined the relationship between the pvc operon and the cup gene clusters in the P. aeruginosa strain MPAO1. Mutations within the pvc genes compromised biofilm development and significantly reduced the expression of cupB1-6 and cupC1-3, as well as different genes of the cupB/cupC two-component regulatory systems, roc1/roc2. Adjacent to pvc is the transcriptional regulator ptxR. A ptxR mutation in MPAO1 significantly reduced the expression of the pvc genes, the cupB/cupC genes, and the roc1/roc2 genes. Overexpression of the intact chromosomally-encoded pvc operon by a ptxR plasmid significantly enhanced cupB2, cupC2, rocS1, and rocS2 expression and biofilm development. Exogenously added paerucumarin significantly increased the expression of cupB2, cupC2, rocS1 and rocS2 in the pvcA mutant. Our results suggest that pvc influences P. aeruginosa biofilm development through the cup gene clusters in a pathway that involves paerucumarin, PtxR, and different cup regulators.
Related JoVE Video
An organoselenium compound inhibits Staphylococcus aureus biofilms on hemodialysis catheters in vivo.
Antimicrob. Agents Chemother.
PUBLISHED: 11-28-2011
Show Abstract
Hide Abstract
Colonization of central venous catheters (CVCs) by pathogenic bacteria leads to catheter-related bloodstream infections (CRBSIs). These colonizing bacteria form highly antibiotic-resistant biofilms. Staphylococcus aureus is one of the most frequently isolated pathogens in CRBSIs. Impregnating CVC surfaces with antimicrobial agents has various degrees of effectiveness in reducing the incidence of CRBSIs. We recently showed that organoselenium covalently attached to disks as an antibiofilm agent inhibited the development of S. aureus biofilms. In this study, we investigated the ability of an organoselenium coating on hemodialysis catheters (HDCs) to inhibit S. aureus biofilms in vitro and in vivo. S. aureus failed to develop biofilms on HDCs coated with selenocyanatodiacetic acid (SCAA) in either static or flowthrough continuous-culture systems. The SCAA coating also inhibited the development of S. aureus biofilms on HDCs in vivo for 3 days. The SCAA coating was stable and nontoxic to cell culture or animals. This new method for coating the internal and external surfaces of HDCs with SCAA has the potential to prevent catheter-related infections due to S. aureus.
Related JoVE Video
Serum albumin alters the expression of iron-controlled genes in Pseudomonas aeruginosa.
Microbiology (Reading, Engl.)
PUBLISHED: 11-03-2011
Show Abstract
Hide Abstract
Pseudomonas aeruginosa, which causes serious infections in immunocompromised patients, produces numerous virulence factors, including exotoxin A and the siderophore pyoverdine. As production of these virulence factors is influenced by the host environment, we examined the effect serum has on global transcription within P. aeruginosa strain PAO1 at different phases of growth in an iron-deficient medium. At early exponential phase, serum significantly enhanced expression of 138 genes, most of which are repressed by iron, including pvdS, regA and the pyoverdine synthesis genes. However, serum did not interfere with the repression of these genes by iron. Serum enhanced regA expression in a fur mutant of PAO1 but not in a pvdS mutant. The serum iron-binding protein apotransferrin, but not ferritin, enhanced regA and pvdS expression. However, in PAO1 grown in a chemically defined medium that contains no iron, serum but not apotransferrin enhanced pvdS and regA expression. While complement inactivation failed to eliminate this effect, albumin absorption reduced the effect of serum on pvdS and regA expression in the iron-deficient medium chelexed tryptic soy broth dialysate. Additionally, albumin absorption eliminated the effect of serum on pvdS and regA expression in the chemically defined medium. These results suggest that serum enhances the expression of P. aeruginosa iron-controlled genes by two mechanisms: one through apotransferrin and another one through albumin.
Related JoVE Video
An in vitro biofilm model to examine the effect of antibiotic ointments on biofilms produced by burn wound bacterial isolates.
Burns
PUBLISHED: 07-28-2010
Show Abstract
Hide Abstract
Topical treatment of burn wounds is essential as reduced blood supply in the burned tissues restricts the effect of systemic antibiotics. On the burn surface, microorganisms exist within a complex structure termed a biofilm, which enhances bacterial resistance to antimicrobial agents significantly. Since bacteria differ in their ability to develop biofilms, the susceptibility of these biofilms to topically applied antibiotics varies, making it essential to identify which topical antibiotics efficiently disrupt or prevent biofilms produced by these pathogens. Yet, a simple in vitro assay to compare the susceptibility of biofilms produced by burn wound isolates to different topical antibiotics has not been reported.
Related JoVE Video
Norepinephrine represses the expression of toxA and the siderophore genes in Pseudomonas aeruginosa.
FEMS Microbiol. Lett.
PUBLISHED: 07-27-2009
Show Abstract
Hide Abstract
Among the different extracellular virulence factors produced by Pseudomonas aeruginosa are exotoxin A (ETA) and the pyoverdine and pyochelin siderophores. Production of ETA and the siderophores requires the function of the iron-starvation sigma factor PvdS, the transcriptional activator RegA, and the AraC-activator PchR. Iron represses the production of ETA and the siderophores by repressing the expression of pvdS, regA, and pchR. PvdS regulates the expression of the ETA gene, toxA, regA, and the pyoverdine synthesis genes. The catecholamine norepinephrine enhances the growth of pathogenic bacteria by transferring iron from host-binding proteins. In this study, we elucidated the mechanism by which norepinephrine and other catecholamines induce P. aeruginosa growth. We also investigated whether norepinephrine regulates the expression of toxA and the siderophore genes, and the mechanism of this regulation. Norepinephrine enhanced the growth of P. aeruginosa by supplying iron from transferrin. This provision of iron repressed the expression of toxA, the pyoverdine genes pvdD and pvdE, and their regulators, pvdS, regA, and pchR, suggesting that norepinephrine accomplishes this repression through PvdS and PchR. Additionally, norepinephrine bypassed PvdS and supported the growth of a pvdS deletion mutant, indicating that norepinephrine transfers iron to P. aeruginosa independent of pyoverdine. Thus, norepinephrine apparently influences the pathogenesis of P. aeruginosa by affecting its pattern of growth and the production of virulence factors.
Related JoVE Video
Role of Vfr in regulating exotoxin A production by Pseudomonas aeruginosa.
Microbiology (Reading, Engl.)
PUBLISHED: 04-23-2009
Show Abstract
Hide Abstract
Pseudomonas aeruginosa exotoxin A (ETA) production depends on the virulence-factor regulator Vfr. Recent evidence indicates that the P. aeruginosa iron-starvation sigma factor PvdS also enhances ETA production through the ETA-regulatory gene regA. Mutants defective in vfr, regA and pvdS, plasmids that overexpress these genes individually and lacZ transcriptional/translational fusion plasmids were utilized to examine the relationship between vfr, regA and pvdS in regulating P. aeruginosa ETA production. ETA concentration and regA expression were reduced significantly in PAODeltavfr, but pvdS expression was not affected. Overexpression of Vfr produced a limited increase in ETA production in PAODeltapvdS, but not PAODeltaregA. Additionally, overexpression of either RegA or PvdS did not enhance ETA production in PAODeltavfr. RT-PCR analysis showed that iron did not affect the accumulation of vfr mRNA in PAO1. These results suggest that: (i) Vfr enhances toxA expression in PAO1 both directly and indirectly through regA, but not through pvdS; (ii) vfr expression is not regulated by iron; and (iii) both Vfr and PvdS cooperate in the presence of RegA to achieve a maximum level of toxA expression.
Related JoVE Video
Organoselenium coating on cellulose inhibits the formation of biofilms by Pseudomonas aeruginosa and Staphylococcus aureus.
Appl. Environ. Microbiol.
PUBLISHED: 04-03-2009
Show Abstract
Hide Abstract
Among the most difficult bacterial infections encountered in treating patients are wound infections, which may occur in burn victims, patients with traumatic wounds, necrotic lesions in people with diabetes, and patients with surgical wounds. Within a wound, infecting bacteria frequently develop biofilms. Many current wound dressings are impregnated with antimicrobial agents, such as silver or antibiotics. Diffusion of the agent(s) from the dressing may damage or destroy nearby healthy tissue as well as compromise the effectiveness of the dressing. In contrast, the antimicrobial agent selenium can be covalently attached to the surfaces of a dressing, prolonging its effectiveness. We examined the effectiveness of an organoselenium coating on cellulose discs in inhibiting Pseudomonas aeruginosa and Staphylococcus aureus biofilm formation. Colony biofilm assays revealed that cellulose discs coated with organoselenium completely inhibited P. aeruginosa and S. aureus biofilm formation. Scanning electron microscopy of the cellulose discs confirmed these results. Additionally, the coating on the cellulose discs was stable and effective after a week of incubation in phosphate-buffered saline. These results demonstrate that 0.2% selenium in a coating on cellulose discs effectively inhibits bacterial attachment and biofilm formation and that, unlike other antimicrobial agents, longer periods of exposure to an aqueous environment do not compromise the effectiveness of the coating.
Related JoVE Video
Gallium maltolate treatment eradicates Pseudomonas aeruginosa infection in thermally injured mice.
Antimicrob. Agents Chemother.
PUBLISHED: 02-02-2009
Show Abstract
Hide Abstract
Gallium (Ga) is a semimetallic element that has demonstrated therapeutic and diagnostic-imaging potential in a number of disease settings, including cancer and infectious diseases. Galliums biological actions stem from its ionic radius being almost the same as that of ferric iron (Fe(3+)), whereby it can replace iron (Fe) in Fe(3+)-dependent biological systems, such as bacterial and mammalian Fe transporters and Fe(3+)-containing enzymes. Unlike Fe(3+), ionic gallium (Ga(3+)) cannot be reduced, and when incorporated, it inactivates Fe(3+)-dependent reduction and oxidation processes that are necessary for bacterial and mammalian cell proliferation. Most pathogenic bacteria require Fe for growth and function, and the availability of Fe in the host or environment can greatly enhance virulence. We examined whether gallium maltolate (GaM), a novel formulation of Ga, had antibacterial activity in a thermally injured acute infection mouse model. Dose-response studies indicated that a GaM dose as low as 25 mg/kg of body weight delivered subcutaneously was sufficient to provide 100% survival in a lethal P. aeruginosa-infected thermally injured mouse model. Mice treated with 100 mg/kg GaM had undetectable levels of Pseudomonas aeruginosa in their wounds, livers, and spleens, while the wounds of untreated mice were colonized with over 10(8) P. aeruginosa CFU/g of tissue and their livers and spleens were colonized with over 10(5) P. aeruginosa CFU/g of tissue. GaM also significantly reduced the colonization of Staphylococcus aureus and Acinetobacter baumannii in the wounds of thermally injured mice. Furthermore, GaM was also therapeutically effective in preventing preestablished P. aeruginosa infections at the site of the injury from spreading systemically. Taken together, our data suggest that GaM is potentially a novel antibacterial agent for the prevention and treatment of wound infections following thermal injury.
Related JoVE Video
Characterization of biofilm-like structures formed by Pseudomonas aeruginosa in a synthetic mucus medium.
BMC Microbiol.
Show Abstract
Hide Abstract
The accumulation of thick stagnant mucus provides a suitable environment for the growth of Pseudomonas aeruginosa and Staphylococcus aureus within the lung alveoli of cystic fibrosis (CF) patients. These infections cause significant lung damage, leading to respiratory failure and death. In an artificial mucin containing medium ASM+, P. aeruginosa forms structures that resemble typical biofilms but are not attached to any surface. We refer to these structures as biofilm like structures (BLS). Using ASM+ in a static microtiter plate culture system, we examined the roles of mucin, extracellular DNA, environmental oxygen (EO2), and quorum sensing (QS) in the development of biofilm-like structures (BLS) by P. aeruginosa; and the effect of EO2 and P. aeruginosa on S. aureus BLS.
Related JoVE Video
Garlic ointment inhibits biofilm formation by bacterial pathogens from burn wounds.
J. Med. Microbiol.
Show Abstract
Hide Abstract
When thermal injury damages the skin, the physical barrier protecting underlying tissues from invading micro-organisms is compromised and the hosts immune system becomes supressed, facilitating colonization and infection of burn wounds with micro-organisms. Within the wound, bacteria often develop biofilms, which protect the bacteria from the immune response and enhance their resistance to antibiotics. As the prophylactic use of conventional antibiotics drives selection of drug-resistant strains, the use of novel agents to prevent biofilm formation by wound pathogens is essential. In the present study, we utilized our recently developed in vitro wound biofilm model to examine the antibiofilm activity of garlic (Allium sativum). Wound pathogens were inoculated on sterile cellulose discs, exposed to formulated garlic ointment (GarO) or ointment base, and incubated to allow biofilm development. Biofilms were quantified and visualized microscopically. GarO prevented biofilm development by Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, Acinetobacter baumannii and Klebsiella pneumoniae, and caused a 2-5 log reduction of the bioburden within Enterococcus faecalis biofilms. Additionally, GarO disrupted partially developed biofilms produced by S. aureus, S. epidermidis and A. baumannii. The antistaphylococcal activity of GarO was stable for over 3 months at room temperature. Thus, GarO could be used as a prophylactic therapy to prevent wound biofilms caused by both Gram-negative and Gram-positive bacteria from forming, and may be a potential therapy for disrupting established staphylococcal biofilms.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.