JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Causal role of single nucleotide polymorphisms within the mprF gene of Staphylococcus aureus in daptomycin resistance.
Antimicrob. Agents Chemother.
PUBLISHED: 09-03-2013
Show Abstract
Hide Abstract
Single nucleotide polymorphisms (SNPs) within the mprF open reading frame (ORF) have been commonly observed in daptomycin-resistant (DAP(r)) Staphylococcus aureus strains. Such SNPs are usually associated with a gain-in-function phenotype, in terms of either increased synthesis or enhanced translocation (flipping) of lysyl-phosphatidylglycerol (L-PG). However, it is unclear if such mprF SNPs are causal in DAP(r) strains or are merely a biomarker for this phenotype. In this study, we used an isogenic set of S. aureus strains: (i) Newman, (ii) its isogenic ?mprF mutant, and (iii) several in trans plasmid complementation constructs, expressing either a wild-type or point-mutated form of the mprF ORF cloned from two isogenic DAP-susceptible (DAP(s))-DAP(r) strain pairs (616-701 and MRSA11/11-REF2145). Complementation of the ?mprF strain with singly point-mutated mprF genes (mprFS295L or mprFT345A) revealed that (i) individual and distinct point mutations within the mprF ORF can recapitulate phenotypes observed in donor strains (i.e., changes in DAP MICs, positive surface charge, and cell membrane phospholipid profiles) and (ii) these gain-in-function SNPs (i.e., enhanced L-PG synthesis) likely promote reduced DAP binding to S. aureus by a charge repulsion mechanism. Thus, for these two DAP(r) strains, the defined mprF SNPs appear to be causally related to this phenotype.
Related JoVE Video
Additional routes to Staphylococcus aureus daptomycin resistance as revealed by comparative genome sequencing, transcriptional profiling, and phenotypic studies.
PLoS ONE
PUBLISHED: 02-05-2013
Show Abstract
Hide Abstract
Daptomycin is an extensively used anti-staphylococcal agent due to the rise in methicillin-resistant Staphylococcus aureus, but the mechanism(s) of resistance is poorly understood. Comparative genome sequencing, transcriptomics, ultrastructure, and cell envelope studies were carried out on two relatively higher level (4 and 8 µg/ml(-1)) laboratory-derived daptomycin-resistant strains (strains CB1541 and CB1540 respectively) compared to their parent strain (CB1118; MW2). Several mutations were found in the strains. Both strains had the same mutations in the two-component system genes walK and agrA. In strain CB1540 mutations were also detected in the ribose phosphate pyrophosphokinase (prs) and polyribonucleotide nucleotidyltransferase genes (pnpA), a hypothetical protein gene, and in an intergenic region. In strain CB1541 there were mutations in clpP, an ATP-dependent protease, and two different hypothetical protein genes. The strain CB1540 transcriptome was characterized by upregulation of cap (capsule) operon genes, genes involved in the accumulation of the compatible solute glycine betaine, ure genes of the urease operon, and mscL encoding a mechanosensitive chanel. Downregulated genes included smpB, femAB and femH involved in the formation of the pentaglycine interpeptide bridge, genes involved in protein synthesis and fermentation, and spa encoding protein A. Genes altered in their expression common to both transcriptomes included some involved in glycine betaine accumulation, mscL, ure genes, femH, spa and smpB. However, the CB1541 transcriptome was further characterized by upregulation of various heat shock chaperone and protease genes, consistent with a mutation in clpP, and lytM and sceD. Both strains showed slow growth, and strongly decreased autolytic activity that appeared to be mainly due to decreased autolysin production. In contrast to previous common findings, we did not find any mutations in phospholipid biosynthesis genes, and it appears there are multiple pathways to and factors in daptomycin resistance.
Related JoVE Video
VraSR two-component regulatory system contributes to mprF-mediated decreased susceptibility to daptomycin in in vivo-selected clinical strains of methicillin-resistant Staphylococcus aureus.
Antimicrob. Agents Chemother.
PUBLISHED: 10-10-2011
Show Abstract
Hide Abstract
Daptomycin (DAP) is a new class of cyclic lipopeptide antibiotic highly active against methicillin-resistant Staphylococcus aureus (MRSA) infections. Proposed mechanisms involve disruption of the functional integrity of the bacterial membrane in a Ca-dependent manner. In the present work, we investigated the molecular basis of DAP resistance in a group of isogenic MRSA clinical strains obtained from patients with S. aureus infections after treatment with DAP. Different point mutations were found in the mprF gene in DAP-resistant (DR) strains. Investigation of the mprF L826F mutation in DR strains was accomplished by inactivation and transcomplementation of either full-length wild-type or mutated mprF in DAP-susceptible (DS) strains, revealing that they were mechanistically linked to the DR phenotype. However, our data suggested that mprF was not the only factor determining the resistance to DAP. Differential gene expression analysis showed upregulation of the two-component regulatory system vraSR. Inactivation of vraSR resulted in increased DAP susceptibility, while complementation of vraSR mutant strains restored DAP resistance to levels comparable to those observed in the corresponding DR wild-type strain. Electron microscopy analysis showed a thicker cell wall in DR CB5012 than DS CB5011, an effect that was related to the impact of vraSR and mprF mutations in the cell wall. Moreover, overexpression of vraSR in DS strains resulted in both increased resistance to DAP and decreased resistance to oxacillin, similar to the phenotype observed in DR strains. These results support the suggestion that, in addition to mutations in mprF, vraSR contributes to DAP resistance in the present group of clinical strains.
Related JoVE Video
In vitro cross-resistance to daptomycin and host defense cationic antimicrobial peptides in clinical methicillin-resistant Staphylococcus aureus isolates.
Antimicrob. Agents Chemother.
PUBLISHED: 06-27-2011
Show Abstract
Hide Abstract
We investigated the hypothesis that methicillin-resistant Staphylococcus aureus (MRSA) isolates developing reduced susceptibilities to daptomycin (DAP; a calcium-dependent molecule acting as a cationic antimicrobial peptide [CAP]) may also coevolve reduced in vitro susceptibilities to host defense cationic antimicrobial peptides (HDPs). Ten isogenic pairs of clinical MRSA DAP-susceptible/DAP-resistant (DAP(s)/DAP(r)) strains were tested against two distinct HDPs differing in structure, mechanism of action, and origin (thrombin-induced platelet microbicidal proteins [tPMPs] and human neutrophil peptide-1 [hNP-1]) and one bacterium-derived CAP, polymyxin B (PMB). Seven of 10 DAP(r) strains had point mutations in the mprF locus (with or without yyc operon mutations), while three DAP(r) strains had neither mutation. Several phenotypic parameters previously associated with DAP(r) were also examined: cell membrane order (fluidity), surface charge, and cell wall thickness profiles. Compared to the 10 DAP(s) parental strains, their respective DAP(r) strains exhibited (i) significantly reduced susceptibility to killing by all three peptides (P < 0.05), (ii) increased cell membrane fluidity, and (iii) significantly thicker cell walls (P < 0.0001). There was no consistent pattern of surface charge profiles distinguishing DAP(s) and DAP(r) strain pairs. Reduced in vitro susceptibility to two HDPs and one bacterium-derived CAP tracked closely with DAP(r) in these 10 recent MRSA clinical isolates. These results suggest that adaptive mechanisms involved in the evolution of DAP(r) also provide MRSA with enhanced survivability against HDPs. Such adaptations appear to correlate with MRSA variations in cell membrane order and cell wall structure. DAP(r) strains with or without mutations in the mprF locus demonstrated significant cross-resistance profiles to these unrelated CAPs.
Related JoVE Video
Regulation of mprF by antisense RNA restores daptomycin susceptibility to daptomycin-resistant isolates of Staphylococcus aureus.
Antimicrob. Agents Chemother.
PUBLISHED: 10-25-2010
Show Abstract
Hide Abstract
Mutations in mprF have been shown to result in reduced susceptibility to daptomycin and other cationic antibacterials. An mprF antisense-inducible plasmid was constructed and used to demonstrate that depletion of mprF can reestablish susceptibility to daptomycin. Inducing antisense to mprF also resulted in increased susceptibility to vancomycin and gentamicin but, paradoxically, decreased susceptibility to oxacillin. These results suggest that mprF mutations that reduce susceptibility to cationic antibacterials result in a gain-of-function phenotype.
Related JoVE Video
Analysis of cell membrane characteristics of in vitro-selected daptomycin-resistant strains of methicillin-resistant Staphylococcus aureus.
Antimicrob. Agents Chemother.
PUBLISHED: 03-30-2009
Show Abstract
Hide Abstract
Our previous studies of clinical daptomycin-resistant (Dap(r)) Staphylococcus aureus strains suggested that resistance is linked to the perturbations of several key cell membrane (CM) characteristics, including the CM order (fluidity), phospholipid content and asymmetry, and relative surface charge. In the present study, we examined the CM profiles of a well-known methicillin-resistant Staphylococcus aureus (MRSA) strain (MW2) after in vitro selection for DAP resistance by a 20-day serial passage in sublethal concentrations of DAP. Compared to levels for the parental strain, Dap(r) strains exhibited (i) decreased CM fluidity, (ii) the increased synthesis of total lysyl-phosphatidylglycerol (LPG), (iii) the increased flipping of LPG to the CM outer bilayer, and (iv) the increased expression of mprF, the gene responsible for the latter two phenotypes. In addition, we found that the expression of the dlt operon, which also increases positive surface charge, was enhanced in the Dap(r) mutants. These phenotypic and genotypic changes correlated with reduced DAP surface binding, mirroring observations made in clinical Dap(r) isolates. In this strain, serial exposure to DAP induced an increase in vancomycin MICs into the vancomycin-intermediate S. aureus (VISA) range (4 microg/ml) in parallel with increasing DAP MICs. Also, this Dap(r) strain exhibited significantly thicker cell walls than the parental strain, potentially correlating with the coevolution of the VISA phenotype and implicating cell wall structure and/or function in the Dap(r) phenotype. Importantly, despite the overexpression of mprF and dlt, the relative net positive surface charge was decreased in the Dap(r) mutants, suggesting that other factors contribute to the surface charge alterations and that a simple charge repulsion mechanism could not entirely explain the Dap(r) phenotype in these strains.
Related JoVE Video
Whole genome characterization of the mechanisms of daptomycin resistance in clinical and laboratory derived isolates of Staphylococcus aureus.
PLoS ONE
Show Abstract
Hide Abstract
Daptomycin remains one of our last-line anti-staphylococcal agents. This study aims to characterize the genetic evolution to daptomycin resistance in S. aureus.
Related JoVE Video
LC-MS/MS characterization of phospholipid content in daptomycin-susceptible and -resistant isolates of Staphylococcus aureus with mutations in mprF.
Mol. Membr. Biol.
Show Abstract
Hide Abstract
Daptomycin (DAP) is a cyclic lipopeptide antibiotic used for the treatment of certain Staphylococcus aureus infections. Although rare, strains have been isolated that are DAP resistant. These strains usually have mutations in mprF, a gene encoding a membrane protein with both lysylphosphatidylglycerol (LPG) synthase and flippase activities. Because ?mprF strains have increased DAP susceptibility, the mechanism of resistance is not likely due to a loss of mprF function. In this study, we developed an LC-MS assay to examine the effect of different mprF mutations on the ratio of phosphatidylglycerol (PG) to LPG in the membrane. Our assay demonstrated that some, but not all, mutations in the flippase and synthase domains result in small but reproducible increases in the proportion of LPG relative to PG. Techniques described herein represent a higher throughput and more sensitive method for measuring relative phospholipids levels. These results offer guidance in the understanding of how mprF confers DAP resistance; namely, mprF-mediated resistance may be through more than one mechanism, including increased overall LPG synthesis and increased LPG present on the outer leaflet of the cytoplasmic membrane.
Related JoVE Video
Differential Adaptations of Methicillin-Resistant Staphylococcus aureus to Serial In Vitro Passage in Daptomycin: Evolution of Daptomycin Resistance and Role of Membrane Carotenoid Content and Fluidity.
Int J Microbiol
Show Abstract
Hide Abstract
Previous studies showed serial 20 d in vitro passage of MRSA strain MW2 in sublethal daptomycin (DAP) resulted in diverse perturbations in both cell membrane (CM) and cell wall (CW) characteristics, including increased CM rigidity; increased CW thickness; "gain-in-function" single nucleotide polymorphisms (SNPs) in the mprF locus (i.e., increased synthesis and translocation of lysyl-phosphatidylglycerol (L-PG)); progressive accumulation of SNPs in yyc and rpo locus genes; reduced carotenoid production; cross-resistance to innate host defense peptides. The current study was designed to characterize the reproducibility of these phenotypic and genotypic modifications following in vitro serial passages of the same parental strain. After a second 20d serial in vitro passage of parental MW2, emergence of DAP-R was associated with evolution of several phenotypes closely mirroring previous passage outcomes. However, in contrast to the initial serial passage strain set, we observed (i) only modest increase in L-PG synthesis and no increase in L-PG outer CM translocation; (ii) significantly increased carotenoid synthesis (P < 0.05); (iii) a different order of SNP accumulations (mprF ? rpoB ? yycG); (iv) a different cadre and locations of such SNPs. Thus, MRSA strains are not "pre-programmed" to phenotypically and/or genotypically adapt in an identical manner during induction of DAP resistance.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.