JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Understanding the adoption dynamics of medical innovations: affordances of the da Vinci robot in the Netherlands.
Soc Sci Med
PUBLISHED: 07-15-2014
Show Abstract
Hide Abstract
This study explored the rather rapid adoption of a new surgical device - the da Vinci robot - in the Netherlands despite the high costs and its controversial clinical benefits. We used the concept 'affordances' as a conceptual-analytic tool to refer to the perceived promises, symbolic meanings, and utility values of an innovation constructed in the wider social context of use. This concept helps us empirically understand robot adoption. Data from 28 in-depth interviews with diverse purposively-sampled stakeholders, and from medical literature, policy documents, Health Technology Assessment reports, congress websites and patients' weblogs/forums between April 2009 and February 2014 were systematically analysed from the perspective of affordances. We distinguished five interrelated affordances of the robot that accounted for shaping and fulfilling its rapid adoption: 'characteristics-related' affordances such as smart nomenclature and novelty, symbolising high-tech clinical excellence; 'research-related' affordances offering medical-technical scientific excellence; 'entrepreneurship-related' affordances for performing better-than-the-competition; 'policy-related' affordances indicating the robot's liberalised provision and its reduced financial risks; and 'communication-related' affordances of the robot in shaping patients' choices and the public's expectations by resonating promising discourses while pushing uncertainties into the background. These affordances make the take-up and use of the da Vinci robot sound perfectly rational and inevitable. This Dutch case study demonstrates the fruitfulness of the affordances approach to empirically capturing the contextual dynamics of technology adoption in health care: exploring in-depth actors' interaction with the technology while considering the interpretative spaces created in situations of use. This approach can best elicit real-life value of innovations, values as defined through the eyes of (potential) users.
Related JoVE Video
Evaluation of molecular assays for identification Campylobacter fetus species and subspecies and development of a C. fetus specific real-time PCR assay.
J. Microbiol. Methods
PUBLISHED: 05-15-2013
Show Abstract
Hide Abstract
Phenotypic differentiation between Campylobacter fetus (C. fetus) subspecies fetus and C. fetus subspecies venerealis is hampered by poor reliability and reproducibility of biochemical assays. AFLP (amplified fragment length polymorphism) and MLST (multilocus sequence typing) are the molecular standards for C. fetus subspecies identification, but these methods are laborious and expensive. Several PCR assays for C. fetus subspecies identification have been described, but a reliable comparison of these assays is lacking. The aim of this study was to evaluate the most practical and routinely implementable published PCR assays designed for C. fetus species and subspecies identification. The sensitivity and specificity of the assays were calculated by using an extensively characterized and diverse collection of C. fetus strains. AFLP and MLST identification were used as reference. Two PCR assays were able to identify C. fetus strains correctly at species level. The C. fetus species identification target, gene nahE, of one PCR assay was used to develop a real-time PCR assay with 100% sensitivity and 100% specificity, but the development of a subspecies venerealis specific real-time PCR (ISCfe1) failed due to sequence variation of the target insertion sequence and prevalence in other Campylobacter species. None of the published PCR assays was able to identify C. fetus strains correctly at subspecies level. Molecular analysis by AFLP or MLST is still recommended to identify C. fetus isolates at subspecies level.
Related JoVE Video
Adhesins in human fungal pathogens: glue with plenty of stick.
Eukaryotic Cell
PUBLISHED: 02-08-2013
Show Abstract
Hide Abstract
Understanding the pathogenesis of an infectious disease is critical for developing new methods to prevent infection and diagnose or cure disease. Adherence of microorganisms to host tissue is a prerequisite for tissue invasion and infection. Fungal cell wall adhesins involved in adherence to host tissue or abiotic medical devices are critical for colonization leading to invasion and damage of host tissue. Here, with a main focus on pathogenic Candida species, we summarize recent progress made in the field of adhesins in human fungal pathogens and underscore the importance of these proteins in establishment of fungal diseases.
Related JoVE Video
Practicalities of using non-local or non-recent multilocus sequence typing data for source attribution in space and time of human campylobacteriosis.
PLoS ONE
PUBLISHED: 02-06-2013
Show Abstract
Hide Abstract
In this study, 1208 Campylobacter jejuni and C. coli isolates from humans and 400 isolates from chicken, collected in two separate periods over 12 years in The Netherlands, were typed using multilocus sequence typing (MLST). Statistical evidence was found for a shift of ST frequencies in human isolates over time. The human MLST data were also compared to published data from other countries to determine geographical variation. Because only MLST typed data from chicken, taken from the same time point and spatial location, were available in addition to the human data, MLST datasets for other Campylobacter reservoirs from selected countries were used. The selection was based on the degree of similarity of the human isolates between countries. The main aim of this study was to better understand the consequences of using non-local or non-recent MLST data for attributing domestically acquired human Campylobacter infections to specific sources of origin when applying the asymmetric island model for source attribution. In addition, a power-analysis was done to find the minimum number of source isolates needed to perform source attribution using an asymmetric island model. This study showed that using source data from other countries can have a significant biasing effect on the attribution results so it is important to carefully select data if the available local data lack in quality and/or quantity. Methods aimed at reducing this bias were proposed.
Related JoVE Video
Acknowledging patient heterogeneity in economic evaluation : a systematic literature review.
Pharmacoeconomics
PUBLISHED: 01-19-2013
Show Abstract
Hide Abstract
Patient heterogeneity is the part of variability that can be explained by certain patient characteristics (e.g. age, disease stage). Population reimbursement decisions that acknowledge patient heterogeneity could potentially save money and increase population health. To date, however, economic evaluations pay only limited attention to patient heterogeneity. The objective of the present paper is to provide a comprehensive overview of the current knowledge regarding patient heterogeneity within economic evaluation of healthcare programmes.
Related JoVE Video
Genetic features differentiating bovine, food, and human isolates of shiga toxin-producing Escherichia coli O157 in The Netherlands.
J. Clin. Microbiol.
PUBLISHED: 12-21-2011
Show Abstract
Hide Abstract
The frequency of Escherichia coli O157 genotypes among bovine, food, and human clinical isolates from The Netherlands was studied. Genotyping included the lineage-specific polymorphism assay (LSPA6), the Shiga-toxin-encoding bacteriophage insertion site assay (SBI), and PCR detection and/or subtyping of virulence factors and markers [stx1, stx(2a)/stx(2c), q21/Q933, tir(A255T), and rhsA(C3468G)]. LSPA6 lineage II dominated among bovine isolates (63%), followed by lineage I/II (35.6%) and lineage I (1.4%). In contrast, the majority of the human isolates were typed as lineage I/II (77.6%), followed by lineage I (14.1%) and lineage II (8.2%). Multivariate analysis revealed that the tir(A255T) SNP and the stx(2a)/stx(2c) gene variants were the genetic features most differentiating human from bovine isolates. Bovine and food isolates were dominated by stx(2c) (86.4% and 65.5%, respectively). Among human isolates, the frequency of stx(2c) was 36.5%, while the frequencies of stx(2a) and stx(2a) plus stx(2c) were 41.2% and 22.4%, respectively. Bovine isolates showed equal distribution of tir(255A) (54.8%) and tir(255T) (45.2%), while human isolates were dominated by the tir(255T) genotype (92.9%). LSPA6 lineage I isolates were all genotype stx(2c) and tir(255T), while LSPA6 lineage II was dominated by tir(255A) (86.4%) and stx(2c) (90.9%). LSPA6 lineage I/II isolates were all genotype tir(255T) but showed more variation in stx(2) types. The results support the hypothesis that in The Netherlands, the genotypes primarily associated with human disease form a minor subpopulation in the bovine reservoir. Comparison with published data revealed that the distribution of LSPA6 lineages among bovine and human clinical isolates differs considerably between The Netherlands and North America.
Related JoVE Video
Carbon nanoparticles as detection labels in antibody microarrays. Detection of genes encoding virulence factors in Shiga toxin-producing Escherichia coli.
Anal. Chem.
PUBLISHED: 10-17-2011
Show Abstract
Hide Abstract
The present study demonstrates that carbon nanoparticles (CNPs) can be used as labels in microarrays. CNPs were used in nucleic acid microarray immunoassays (NAMIAs) for the detection of different Shiga toxin-producing Escherichia coli (STEC) virulence factors: four genes specific for STEC (vt1, vt2, eae, and ehxA) and the gene for E. coli 16S (hui). Optimization was performed using a Box-Behnken design, and the limit of detection for each virulence factor was established. Finally, this NAMIA using CNPs was tested with DNA from 48 field strains originating from cattle feces, and its performance was evaluated by comparing results with those achieved by the reference method q-PCR. All factors tested gave sensitivity and specificity values higher than 0.80 and efficiency values higher than 0.92. Kappa coefficients showed an almost perfect agreement (k > 0.8) between NAMIA and the reference method used for vt1, eae, and ehxA, and a perfect agreement (k = 1) for vt2 and hui. The excellent agreement between the developed NAMIA and q-PCR demonstrates that the proposed analytical procedure is indeed fit for purpose, i.e., it is valuable for fast screening of amplified genetic material such as E. coli virulence factors. This also proves the applicability of CNPs in microarrays.
Related JoVE Video
Molecular epidemiology of Coxiella burnetii from ruminants in Q fever outbreak, the Netherlands.
Emerging Infect. Dis.
PUBLISHED: 04-08-2011
Show Abstract
Hide Abstract
Q fever is a zoonosis caused by the bacterium Coxiella burnetii. One of the largest reported outbreaks of Q fever in humans occurred in the Netherlands starting in 2007; epidemiologic investigations identified small ruminants as the source. To determine the genetic background of C. burnetii in domestic ruminants responsible for the human Q fever outbreak, we genotyped 126 C. burnetii-positive samples from ruminants by using a 10-loci multilocus variable-number tandem-repeat analyses panel and compared them with internationally known genotypes. One unique genotype predominated in dairy goat herds and 1 sheep herd in the human Q fever outbreak area in the south of the Netherlands. On the basis of 4 loci, this genotype is similar to a human genotype from the Netherlands. This finding strengthens the probability that this genotype of C. burnetii is responsible for the human Q fever epidemic in the Netherlands.
Related JoVE Video
The Candida albicans cell wall protein Rhd3/Pga29 is abundant in the yeast form and contributes to virulence.
Yeast
PUBLISHED: 06-10-2010
Show Abstract
Hide Abstract
The glycosylphosphatidylinositol-modified protein Rhd3/Pga29 of the human pathogen Candida albicans belongs to a family of cell wall proteins that are widespread among Candida species but are not found in other fungi. Pga29 is covalently linked to the beta-1,3-glucan framework of the cell wall via beta-1,6-glucan. It is a small and abundant O-glycosylated protein and requires the protein-O-mannosyl transferase Pmt1 for glycosylation. Furthermore, Pga29 is strongly expressed in yeast cells but is downregulated in hyphae. Removal of the PGA29 gene in C. albicans leads to a significant reduction of cell wall mannan; however, Pga29 does not seem to have a major role in maintaining cell wall integrity. In addition, adhesion capacity and hyphae formation appear normal in pga29 deletion mutants. Importantly, the pga29 deletion mutant is less virulent, and infection of reconstituted human epithelium with the pga29 mutant results in a diminished induction of proinflammatory cytokines, such as GM-CSF, TNF, IL-6 and IL-8. We propose that the reduced virulence of the pga29 mutant is a consequence of altered surface properties, resulting in altered fungal recognition.
Related JoVE Video
Isolated Thellungiella shoots do not require roots to survive NaCl and Na2SO4 salt stresses.
Plant Signal Behav
PUBLISHED: 11-13-2009
Show Abstract
Hide Abstract
Shoots of Thellungiella derived by micropropagation were used to estimate the plants salt tolerance and ability to regulate Na+ uptake. Two species with differing salt tolerances were studied: Thellungiella salsuginea (halophilla), which is less tolerant, and Thellungiella botschantzevii, which is more tolerant. Although the shoots of neither ecotype survived at 700 mM NaCl or 200 mM Na2SO4, micropropagated shoots of T. botschantzevii were more tolerant to Na2SO4 (10-100 mM) and NaCl (100-300 mM). In the absence of roots, Na2SO4 salinity reduced shoot growth more dramatically than NaCl salinity. Plantlets of both species were able to adapt to salt stress even when they did not form roots. First, there was no significant correlation between Na+ accumulation in shoots and Na+ concentration in the growth media. Second, K+ concentrations in the shoots exposed to different salt concentrations were maintained at equivalent levels to control plants grown in medium without NaCl or Na2SO4. These results suggest that isolated shoots of Thellungiella possess their own mechanisms for enabling salt tolerance, which contribute to salt tolerance in intact plants.
Related JoVE Video
Comparative genotyping of Campylobacter jejuni strains from patients with Guillain-Barré syndrome in Bangladesh.
PLoS ONE
PUBLISHED: 07-29-2009
Show Abstract
Hide Abstract
Campylobacter jejuni is a common cause of acute gastroenteritis and is associated with post-infectious neuropathies such as the Guillain-Barré syndrome (GBS) and the Miller Fisher syndrome (MFS). We here present comparative genotyping of 49 C. jejuni strains from Bangladesh that were recovered from patients with enteritis or GBS. All strains were serotyped and analyzed by lipo-oligosaccharide (LOS) genotyping, amplified fragment length polymorphism (AFLP) analysis, multilocus sequence typing (MLST), and pulsed-field gel electrophoresis (PFGE).
Related JoVE Video
Functional characterization of excision repair and RecA-dependent recombinational DNA repair in Campylobacter jejuni.
J. Bacteriol.
PUBLISHED: 04-17-2009
Show Abstract
Hide Abstract
The presence and functionality of DNA repair mechanisms in Campylobacter jejuni are largely unknown. In silico analysis of the complete translated genome of C. jejuni NCTC 11168 suggests the presence of genes involved in methyl-directed mismatch repair (MMR), nucleotide excision repair, base excision repair (BER), and recombinational repair. To assess the functionality of these putative repair mechanisms in C. jejuni, mutS, uvrB, ung, and recA knockout mutants were constructed and analyzed for their ability to repair spontaneous point mutations, UV irradiation-induced DNA damage, and nicked DNA. Inactivation of the different putative DNA repair genes did not alter the spontaneous mutation frequency. Disruption of the UvrB and RecA orthologues, but not the putative MutS or Ung proteins, resulted in a significant reduction in viability after exposure to UV irradiation. Assays performed with uracil-containing plasmid DNA showed that the putative uracil-DNA glycosylase (Ung) protein, important for initiation of the BER pathway, is also functional in C. jejuni. Inactivation of recA also resulted in a loss of natural transformation. Overall, the data indicate that C. jejuni has multiple functional DNA repair systems that may protect against DNA damage and limit the generation of genetic diversity. On the other hand, the apparent absence of a functional MMR pathway may enhance the frequency of on-and-off switching of phase variable genes typical for C. jejuni and may contribute to the genetic heterogeneity of the C. jejuni population.
Related JoVE Video
Glycosylation of Candida albicans cell wall proteins is critical for induction of innate immune responses and apoptosis of epithelial cells.
PLoS ONE
Show Abstract
Hide Abstract
C. albicans is one of the most common fungal pathogen of humans, causing local and superficial mucosal infections in immunocompromised individuals. Given that the key structure mediating host-C. albicans interactions is the fungal cell wall, we aimed to identify features of the cell wall inducing epithelial responses and be associated with fungal pathogenesis. We demonstrate here the importance of cell wall protein glycosylation in epithelial immune activation with a predominant role for the highly branched N-glycosylation residues. Moreover, these glycan moieties induce growth arrest and apoptosis of epithelial cells. Using an in vitro model of oral candidosis we demonstrate, that apoptosis induction by C. albicans wild-type occurs in early stage of infection and strongly depends on intact cell wall protein glycosylation. These novel findings demonstrate that glycosylation of the C. albicans cell wall proteins appears essential for modulation of epithelial immunity and apoptosis induction, both of which may promote fungal pathogenesis in vivo.
Related JoVE Video
Risk factors for campylobacteriosis of chicken, ruminant, and environmental origin: a combined case-control and source attribution analysis.
PLoS ONE
Show Abstract
Hide Abstract
Campylobacteriosis contributes strongly to the disease burden of food-borne pathogens. Case-control studies are limited in attributing human infections to the different reservoirs because they can only trace back to the points of exposure, which may not point to the original reservoirs because of cross-contamination. Human Campylobacter infections can be attributed to specific reservoirs by estimating the extent of subtype sharing between strains from humans and reservoirs using multilocus sequence typing (MLST).
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.