JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Systematic annotation of celiac disease loci refines pathological pathways and suggests a genetic explanation for increased interferon-gamma levels.
Hum. Mol. Genet.
PUBLISHED: 09-04-2014
Show Abstract
Hide Abstract
Although genome-wide association studies and fine mapping have identified 39 non-HLA loci associated with celiac disease (CD), it is difficult to pinpoint the functional variants and susceptibility genes in these loci. We applied integrative approaches to annotate and prioritize functional single nucleotide polymorphisms (SNPs), genes and pathways affected in CD. CD-associated SNPs were intersected with regulatory elements categorized by the ENCODE project to prioritize functional variants, while results from cis-expression quantitative trait loci (eQTL) mapping in 1469 blood samples were combined with co-expression analyses to prioritize causative genes. To identify the key cell types involved in CD, we performed pathway analysis on RNA-sequencing data from different immune cell populations and on publicly available expression data on non-immune tissues. We discovered that CD SNPs are significantly enriched in B-cell-specific enhancer regions, suggesting that, besides T-cell processes, B-cell responses play a major role in CD. By combining eQTL and co-expression analyses, we prioritized 43 susceptibility genes in 36 loci. Pathway and tissue-specific expression analyses on these genes suggested enrichment of CD genes in the Th1, Th2 and Th17 pathways, but also predicted a role for four genes in the intestinal barrier function. We also discovered an intricate transcriptional connectivity between CD susceptibility genes and interferon-?, a key effector in CD, despite the absence of CD-associated SNPs in the IFNG locus. Using systems biology, we prioritized the CD-associated functional SNPs and genes. By highlighting a role for B cells in CD, which classically has been described as a T-cell-driven disease, we offer new insights into the mechanisms and pathways underlying CD.
Related JoVE Video
Evaluation of European coeliac disease risk variants in a north Indian population.
Eur. J. Hum. Genet.
PUBLISHED: 06-10-2014
Show Abstract
Hide Abstract
Studies in European populations have contributed to a better understanding of the genetics of complex diseases, for example, in coeliac disease (CeD), studies of over 23?000 European samples have reported association to the HLA locus and another 39 loci. However, these associations have not been evaluated in detail in other ethnicities. We sought to better understand how disease-associated loci that have been mapped in Europeans translate to a disease risk for a population with a different ethnic background. We therefore performed a validation of European risk loci for CeD in 497 cases and 736 controls of north Indian origin. Using a dense-genotyping platform (Immunochip), we confirmed the strong association to the HLA region (rs2854275, P=8.2 × 10(-49)). Three loci showed suggestive association (rs4948256, P=9.3 × 10(-7), rs4758538, P=8.6 × 10(-5) and rs17080877, P=2.7 × 10(-5)). We directly replicated five previously reported European variants (P<0.05; mapping to loci harbouring FASLG/TNFSF18, SCHIP1/IL12A, PFKFB3/PRKCQ, ZMIZ1 and ICOSLG). Using a transferability test, we further confirmed association at PFKFB3/PRKCQ (rs2387397, P=2.8 × 10(-4)) and PTPRK/THEMIS (rs55743914, P=3.4 × 10(-4)). The north Indian population has a higher degree of consanguinity than Europeans and we therefore explored the role of recessively acting variants, which replicated the HLA locus (rs9271850, P=3.7 × 10(-23)) and suggested a role of additional four loci. To our knowledge, this is the first replication study of CeD variants in a non-European population.European Journal of Human Genetics advance online publication, 23 July 2014; doi:10.1038/ejhg.2014.137.
Related JoVE Video
Genetic and epigenetic regulation of gene expression in fetal and adult human livers.
BMC Genomics
PUBLISHED: 05-19-2014
Show Abstract
Hide Abstract
The liver plays a central role in the maintenance of homeostasis and health in general. However, there is substantial inter-individual variation in hepatic gene expression, and although numerous genetic factors have been identified, less is known about the epigenetic factors.
Related JoVE Video
Fine mapping seronegative and seropositive rheumatoid arthritis to shared and distinct HLA alleles by adjusting for the effects of heterogeneity.
Am. J. Hum. Genet.
PUBLISHED: 02-24-2014
Show Abstract
Hide Abstract
Despite progress in defining human leukocyte antigen (HLA) alleles for anti-citrullinated-protein-autoantibody-positive (ACPA(+)) rheumatoid arthritis (RA), identifying HLA alleles for ACPA-negative (ACPA(-)) RA has been challenging because of clinical heterogeneity within clinical cohorts. We imputed 8,961 classical HLA alleles, amino acids, and SNPs from Immunochip data in a discovery set of 2,406 ACPA(-) RA case and 13,930 control individuals. We developed a statistical approach to identify and adjust for clinical heterogeneity within ACPA(-) RA and observed independent associations for serine and leucine at position 11 in HLA-DR?1 (p = 1.4 × 10(-13), odds ratio [OR] = 1.30) and for aspartate at position 9 in HLA-B (p = 2.7 × 10(-12), OR = 1.39) within the peptide binding grooves. These amino acid positions induced associations at HLA-DRB1(?)03 (encoding serine at 11) and HLA-B(?)08 (encoding aspartate at 9). We validated these findings in an independent set of 427 ACPA(-) case subjects, carefully phenotyped with a highly sensitive ACPA assay, and 1,691 control subjects (HLA-DR?1 Ser11+Leu11: p = 5.8 × 10(-4), OR = 1.28; HLA-B Asp9: p = 2.6 × 10(-3), OR = 1.34). Although both amino acid sites drove risk of ACPA(+) and ACPA(-) disease, the effects of individual residues at HLA-DR?1 position 11 were distinct (p < 2.9 × 10(-107)). We also identified an association with ACPA(+) RA at HLA-A position 77 (p = 2.7 × 10(-8), OR = 0.85) in 7,279 ACPA(+) RA case and 15,870 control subjects. These results contribute to mounting evidence that ACPA(+) and ACPA(-) RA are genetically distinct and potentially have separate autoantigens contributing to pathogenesis. We expect that our approach might have broad applications in analyzing clinical conditions with heterogeneity at both major histocompatibility complex (MHC) and non-MHC regions.
Related JoVE Video
Convergent evolution in European and Rroma populations reveals pressure exerted by plague on Toll-like receptors.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 02-03-2014
Show Abstract
Hide Abstract
Recent historical periods in Europe have been characterized by severe epidemic events such as plague, smallpox, or influenza that shaped the immune system of modern populations. This study aims to identify signals of convergent evolution of the immune system, based on the peculiar demographic history in which two populations with different genetic ancestry, Europeans and Rroma (Gypsies), have lived in the same geographic area and have been exposed to similar environments, including infections, during the last millennium. We identified several genes under evolutionary pressure in European/Romanian and Rroma/Gipsy populations, but not in a Northwest Indian population, the geographic origin of the Rroma. Genes in the immune system were highly represented among those under strong evolutionary pressures in Europeans, and infections are likely to have played an important role. For example, Toll-like receptor 1 (TLR1)/TLR6/TLR10 gene cluster showed a strong signal of adaptive selection. Their gene products are functional receptors for Yersinia pestis, the agent of plague, as shown by overexpression studies showing induction of proinflammatory cytokines such as TNF, IL-1?, and IL-6 as one possible infection that may have exerted evolutionary pressures. Immunogenetic analysis showed that TLR1, TLR6, and TLR10 single-nucleotide polymorphisms modulate Y. pestis-induced cytokine responses. Other infections may also have played an important role. Thus, reconstruction of evolutionary history of European populations has identified several immune pathways, among them TLR1/TLR6/TLR10, as being shaped by convergent evolution in two human populations with different origins under the same infectious environment.
Related JoVE Video
Genetics of rheumatoid arthritis contributes to biology and drug discovery.
Yukinori Okada, Di Wu, Gosia Trynka, Towfique Raj, Chikashi Terao, Katsunori Ikari, Yuta Kochi, Koichiro Ohmura, Akari Suzuki, Shinji Yoshida, Robert R Graham, Arun Manoharan, Ward Ortmann, Tushar Bhangale, Joshua C Denny, Robert J Carroll, Anne E Eyler, Jeffrey D Greenberg, Joel M Kremer, Dimitrios A Pappas, Lei Jiang, Jian Yin, Lingying Ye, Ding-Feng Su, Jian Yang, Gang Xie, Ed Keystone, Harm-Jan Westra, Tonu Esko, Andres Metspalu, Xuezhong Zhou, Namrata Gupta, Daniel Mirel, Eli A Stahl, Dorothée Diogo, Jing Cui, Katherine Liao, Michael H Guo, Keiko Myouzen, Takahisa Kawaguchi, Marieke J H Coenen, Piet L C M van Riel, Mart A F J van de Laar, Henk-Jan Guchelaar, Tom W J Huizinga, Philippe Dieudé, Xavier Mariette, S Louis Bridges, Alexandra Zhernakova, René E M Toes, Paul P Tak, Corinne Miceli-Richard, So-Young Bang, Hye-Soon Lee, Javier Martín, Miguel A González-Gay, Luis Rodriguez-Rodriguez, Solbritt Rantapää-Dahlqvist, Lisbeth Arlestig, Hyon K Choi, Yoichiro Kamatani, Pilar Galán, Mark Lathrop, , Steve Eyre, John Bowes, Anne Barton, Niek de Vries, Larry W Moreland, Lindsey A Criswell, Elizabeth W Karlson, Atsuo Taniguchi, Ryo Yamada, Michiaki Kubo, Jun S Liu, Sang-Cheol Bae, Jane Worthington, Leonid Padyukov, Lars Klareskog, Peter K Gregersen, Soumya Raychaudhuri, Barbara E Stranger, Philip L De Jager, Lude Franke, Peter M Visscher, Matthew A Brown, Hisashi Yamanaka, Tsuneyo Mimori, Atsushi Takahashi, Huji Xu, Timothy W Behrens, Katherine A Siminovitch, Shigeki Momohara, Fumihiko Matsuda, Kazuhiko Yamamoto, Robert M Plenge.
Nature
PUBLISHED: 01-07-2014
Show Abstract
Hide Abstract
A major challenge in human genetics is to devise a systematic strategy to integrate disease-associated variants with diverse genomic and biological data sets to provide insight into disease pathogenesis and guide drug discovery for complex traits such as rheumatoid arthritis (RA). Here we performed a genome-wide association study meta-analysis in a total of >100,000 subjects of European and Asian ancestries (29,880 RA cases and 73,758 controls), by evaluating ?10 million single-nucleotide polymorphisms. We discovered 42 novel RA risk loci at a genome-wide level of significance, bringing the total to 101 (refs 2 - 4). We devised an in silico pipeline using established bioinformatics methods based on functional annotation, cis-acting expression quantitative trait loci and pathway analyses--as well as novel methods based on genetic overlap with human primary immunodeficiency, haematological cancer somatic mutations and knockout mouse phenotypes--to identify 98 biological candidate genes at these 101 risk loci. We demonstrate that these genes are the targets of approved therapies for RA, and further suggest that drugs approved for other indications may be repurposed for the treatment of RA. Together, this comprehensive genetic study sheds light on fundamental genes, pathways and cell types that contribute to RA pathogenesis, and provides empirical evidence that the genetics of RA can provide important information for drug discovery.
Related JoVE Video
Immunochip analysis identifies multiple susceptibility loci for systemic sclerosis.
Am. J. Hum. Genet.
PUBLISHED: 01-07-2014
Show Abstract
Hide Abstract
In this study, 1,833 systemic sclerosis (SSc) cases and 3,466 controls were genotyped with the Immunochip array. Classical alleles, amino acid residues, and SNPs across the human leukocyte antigen (HLA) region were imputed and tested. These analyses resulted in a model composed of six polymorphic amino acid positions and seven SNPs that explained the observed significant associations in the region. In addition, a replication step comprising 4,017 SSc cases and 5,935 controls was carried out for several selected non-HLA variants, reaching a total of 5,850 cases and 9,401 controls of European ancestry. Following this strategy, we identified and validated three SSc risk loci, including DNASE1L3 at 3p14, the SCHIP1-IL12A locus at 3q25, and ATG5 at 6q21, as well as a suggested association of the TREH-DDX6 locus at 11q23. The associations of several previously reported SSc risk loci were validated and further refined, and the observed peak of association in PXK was related to DNASE1L3. Our study has increased the number of known genetic associations with SSc, provided further insight into the pleiotropic effects of shared autoimmune risk factors, and highlighted the power of dense mapping for detecting previously overlooked susceptibility loci.
Related JoVE Video
Genetic risk scores and number of autoantibodies in patients with rheumatoid arthritis.
Ann. Rheum. Dis.
PUBLISHED: 12-17-2013
Show Abstract
Hide Abstract
Certain HLA-DRB1 alleles and single-nucleotide polymorphisms (SNPs) are associated with rheumatoid arthritis (RA). Our objective was to examine the combined effect of these associated variants, calculated as a cumulative genetic risk score (GRS) on RA predisposition, as well as the number of autoantibodies (none, one or two present).
Related JoVE Video
Clinical implications of shared genetics and pathogenesis in autoimmune diseases.
Nat Rev Endocrinol
PUBLISHED: 08-20-2013
Show Abstract
Hide Abstract
Many endocrine diseases, including type 1 diabetes mellitus, Graves disease, Addison disease and Hashimoto disease, originate as an autoimmune reaction that affects disease-specific target organs. These autoimmune diseases are characterized by the development of specific autoantibodies and by the presence of autoreactive T cells. They are caused by a complex genetic predisposition that is attributable to multiple genetic variants, each with a moderate-to-low effect size. Most of the genetic variants associated with a particular autoimmune endocrine disease are shared between other systemic and organ-specific autoimmune and inflammatory diseases, such as rheumatoid arthritis, coeliac disease, systemic lupus erythematosus and psoriasis. Here, we review the shared and specific genetic background of autoimmune diseases, summarize their treatment options and discuss how identifying the genetic and environmental factors that predispose patients to an autoimmune disease can help in the diagnosis and monitoring of patients, as well as the design of new treatments.
Related JoVE Video
Systematic identification of trans eQTLs as putative drivers of known disease associations.
Nat. Genet.
PUBLISHED: 08-14-2013
Show Abstract
Hide Abstract
Identifying the downstream effects of disease-associated SNPs is challenging. To help overcome this problem, we performed expression quantitative trait locus (eQTL) meta-analysis in non-transformed peripheral blood samples from 5,311 individuals with replication in 2,775 individuals. We identified and replicated trans eQTLs for 233 SNPs (reflecting 103 independent loci) that were previously associated with complex traits at genome-wide significance. Some of these SNPs affect multiple genes in trans that are known to be altered in individuals with disease: rs4917014, previously associated with systemic lupus erythematosus (SLE), altered gene expression of C1QB and five type I interferon response genes, both hallmarks of SLE. DeepSAGE RNA sequencing showed that rs4917014 strongly alters the 3 UTR levels of IKZF1 in cis, and chromatin immunoprecipitation and sequencing analysis of the trans-regulated genes implicated IKZF1 as the causal gene. Variants associated with cholesterol metabolism and type 1 diabetes showed similar phenomena, indicating that large-scale eQTL mapping provides insight into the downstream effects of many trait-associated variants.
Related JoVE Video
Profile of volatile organic compounds in exhaled breath changes as a result of gluten-free diet.
J Breath Res
PUBLISHED: 06-18-2013
Show Abstract
Hide Abstract
In the present longitudinal study, we followed volatile organic compounds (VOCs) excreted in exhaled breath of 20 healthy individuals over time, while adhering to a gluten-free diet for 4 weeks prior to adherence to a normal diet. We used gas chromatography coupled with mass spectrometry (TD-GC-tof-MS) in combination with chemometric analysis to detect an array of VOCs in exhaled breath. Multivariate analysis was applied to extract the maximal information from the obtained data. Dietary intake was assessed to verify adherence to the diet and to get insight into macronutrient intake during the intervention period. A set of 12 volatile compounds distinguished the samples obtained during the gluten-free diet from those obtained during a normal diet. Seven compounds could be chemically identified (2-butanol, octane, 2-propyl-1pentanol, nonanal, dihydro-4-methyl-2(3H)-furanone, nonanoic acid and dodecanal) and speculated on a possible origin. Our findings suggest that a gluten-free dietary period had a reversible impact on participants excreted metabolites visible in their breath. Several explanations are proposed of influencing metabolic status through dietary interventions. Although the exact origin of the discriminating compounds is not yet known, the main goal of this paper was to share a new potential use of exhaled air analysis and might become a useful tool in fields of nutrition and metabolism.
Related JoVE Video
Human genetics in rheumatoid arthritis guides a high-throughput drug screen of the CD40 signaling pathway.
PLoS Genet.
PUBLISHED: 05-01-2013
Show Abstract
Hide Abstract
Although genetic and non-genetic studies in mouse and human implicate the CD40 pathway in rheumatoid arthritis (RA), there are no approved drugs that inhibit CD40 signaling for clinical care in RA or any other disease. Here, we sought to understand the biological consequences of a CD40 risk variant in RA discovered by a previous genome-wide association study (GWAS) and to perform a high-throughput drug screen for modulators of CD40 signaling based on human genetic findings. First, we fine-map the CD40 risk locus in 7,222 seropositive RA patients and 15,870 controls, together with deep sequencing of CD40 coding exons in 500 RA cases and 650 controls, to identify a single SNP that explains the entire signal of association (rs4810485, P?=?1.4×10(-9)). Second, we demonstrate that subjects homozygous for the RA risk allele have ?33% more CD40 on the surface of primary human CD19+ B lymphocytes than subjects homozygous for the non-risk allele (P?=?10(-9)), a finding corroborated by expression quantitative trait loci (eQTL) analysis in peripheral blood mononuclear cells from 1,469 healthy control individuals. Third, we use retroviral shRNA infection to perturb the amount of CD40 on the surface of a human B lymphocyte cell line (BL2) and observe a direct correlation between amount of CD40 protein and phosphorylation of RelA (p65), a subunit of the NF-?B transcription factor. Finally, we develop a high-throughput NF-?B luciferase reporter assay in BL2 cells activated with trimerized CD40 ligand (tCD40L) and conduct an HTS of 1,982 chemical compounds and FDA-approved drugs. After a series of counter-screens and testing in primary human CD19+ B cells, we identify 2 novel chemical inhibitors not previously implicated in inflammation or CD40-mediated NF-?B signaling. Our study demonstrates proof-of-concept that human genetics can be used to guide the development of phenotype-based, high-throughput small-molecule screens to identify potential novel therapies in complex traits such as RA.
Related JoVE Video
Human disease-associated genetic variation impacts large intergenic non-coding RNA expression.
PLoS Genet.
PUBLISHED: 01-17-2013
Show Abstract
Hide Abstract
Recently it has become clear that only a small percentage (7%) of disease-associated single nucleotide polymorphisms (SNPs) are located in protein-coding regions, while the remaining 93% are located in gene regulatory regions or in intergenic regions. Thus, the understanding of how genetic variations control the expression of non-coding RNAs (in a tissue-dependent manner) has far-reaching implications. We tested the association of SNPs with expression levels (eQTLs) of large intergenic non-coding RNAs (lincRNAs), using genome-wide gene expression and genotype data from five different tissues. We identified 112 cis-regulated lincRNAs, of which 45% could be replicated in an independent dataset. We observed that 75% of the SNPs affecting lincRNA expression (lincRNA cis-eQTLs) were specific to lincRNA alone and did not affect the expression of neighboring protein-coding genes. We show that this specific genotype-lincRNA expression correlation is tissue-dependent and that many of these lincRNA cis-eQTL SNPs are also associated with complex traits and diseases.
Related JoVE Video
Association Analysis of Genetic Variants in the Myosin IXB Gene in Acute Pancreatitis.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Impairment of the mucosal barrier plays an important role in the pathophysiology of acute pancreatitis. The myosin IXB (MYO9B) gene and the two tight-junction adaptor genes, PARD3 and MAGI2, have been linked to gastrointestinal permeability. Common variants of these genes are associated with celiac disease and inflammatory bowel disease, two other conditions in which intestinal permeability plays a role. We investigated genetic variation in MYO9B, PARD3 and MAGI2 for association with acute pancreatitis.
Related JoVE Video
Haplotype-based analysis of ulcerative colitis risk loci identifies both IL2 and IL21 as susceptibility genes in Han Chinese.
Inflamm. Bowel Dis.
PUBLISHED: 06-06-2011
Show Abstract
Hide Abstract
The incidence of ulcerative colitis (UC) varies between Western and Eastern ethnicities. A distinct genetic background may play a role in the differences. Until now, very little was known of the UC genetics in Asian populations. Here we performed a haplotype-based analysis of six known UC susceptibility loci in Han Chinese patients.
Related JoVE Video
Dense genotyping identifies and localizes multiple common and rare variant association signals in celiac disease.
Nat. Genet.
PUBLISHED: 04-15-2011
Show Abstract
Hide Abstract
Using variants from the 1000 Genomes Project pilot European CEU dataset and data from additional resequencing studies, we densely genotyped 183 non-HLA risk loci previously associated with immune-mediated diseases in 12,041 individuals with celiac disease (cases) and 12,228 controls. We identified 13 new celiac disease risk loci reaching genome-wide significance, bringing the number of known loci (including the HLA locus) to 40. We found multiple independent association signals at over one-third of these loci, a finding that is attributable to a combination of common, low-frequency and rare genetic variants. Compared to previously available data such as those from HapMap3, our dense genotyping in a large sample collection provided a higher resolution of the pattern of linkage disequilibrium and suggested localization of many signals to finer scale regions. In particular, 29 of the 54 fine-mapped signals seemed to be localized to single genes and, in some instances, to gene regulatory elements. Altogether, we define the complex genetic architecture of the risk regions of and refine the risk signals for celiac disease, providing the next step toward uncovering the causal mechanisms of the disease.
Related JoVE Video
Trans-eQTLs reveal that independent genetic variants associated with a complex phenotype converge on intermediate genes, with a major role for the HLA.
PLoS Genet.
PUBLISHED: 02-24-2011
Show Abstract
Hide Abstract
For many complex traits, genetic variants have been found associated. However, it is still mostly unclear through which downstream mechanism these variants cause these phenotypes. Knowledge of these intermediate steps is crucial to understand pathogenesis, while also providing leads for potential pharmacological intervention. Here we relied upon natural human genetic variation to identify effects of these variants on trans-gene expression (expression quantitative trait locus mapping, eQTL) in whole peripheral blood from 1,469 unrelated individuals. We looked at 1,167 published trait- or disease-associated SNPs and observed trans-eQTL effects on 113 different genes, of which we replicated 46 in monocytes of 1,490 different individuals and 18 in a smaller dataset that comprised subcutaneous adipose, visceral adipose, liver tissue, and muscle tissue. HLA single-nucleotide polymorphisms (SNPs) were 10-fold enriched for trans-eQTLs: 48% of the trans-acting SNPs map within the HLA, including ulcerative colitis susceptibility variants that affect plausible candidate genes AOAH and TRBV18 in trans. We identified 18 pairs of unlinked SNPs associated with the same phenotype and affecting expression of the same trans-gene (21 times more than expected, P<10(-16)). This was particularly pronounced for mean platelet volume (MPV): Two independent SNPs significantly affect the well-known blood coagulation genes GP9 and F13A1 but also C19orf33, SAMD14, VCL, and GNG11. Several of these SNPs have a substantially higher effect on the downstream trans-genes than on the eventual phenotypes, supporting the concept that the effects of these SNPs on expression seems to be much less multifactorial. Therefore, these trans-eQTLs could well represent some of the intermediate genes that connect genetic variants with their eventual complex phenotypic outcomes.
Related JoVE Video
Meta-analysis of genome-wide association studies in celiac disease and rheumatoid arthritis identifies fourteen non-HLA shared loci.
PLoS Genet.
PUBLISHED: 02-24-2011
Show Abstract
Hide Abstract
Epidemiology and candidate gene studies indicate a shared genetic basis for celiac disease (CD) and rheumatoid arthritis (RA), but the extent of this sharing has not been systematically explored. Previous studies demonstrate that 6 of the established non-HLA CD and RA risk loci (out of 26 loci for each disease) are shared between both diseases. We hypothesized that there are additional shared risk alleles and that combining genome-wide association study (GWAS) data from each disease would increase power to identify these shared risk alleles. We performed a meta-analysis of two published GWAS on CD (4,533 cases and 10,750 controls) and RA (5,539 cases and 17,231 controls). After genotyping the top associated SNPs in 2,169 CD cases and 2,255 controls, and 2,845 RA cases and 4,944 controls, 8 additional SNPs demonstrated P<5 × 10(-8) in a combined analysis of all 50,266 samples, including four SNPs that have not been previously confirmed in either disease: rs10892279 near the DDX6 gene (P(combined)?=? 1.2 × 10(-12)), rs864537 near CD247 (P(combined)?=? 2.2 × 10(-11)), rs2298428 near UBE2L3 (P(combined)?=? 2.5 × 10(-10)), and rs11203203 near UBASH3A (P(combined)?=? 1.1 × 10(-8)). We also confirmed that 4 gene loci previously established in either CD or RA are associated with the other autoimmune disease at combined P<5 × 10(-8) (SH2B3, 8q24, STAT4, and TRAF1-C5). From the 14 shared gene loci, 7 SNPs showed a genome-wide significant effect on expression of one or more transcripts in the linkage disequilibrium (LD) block around the SNP. These associations implicate antigen presentation and T-cell activation as a shared mechanism of disease pathogenesis and underscore the utility of cross-disease meta-analysis for identification of genetic risk factors with pleiotropic effects between two clinically distinct diseases.
Related JoVE Video
Multiple independent variants in 6q21-22 associated with susceptibility to celiac disease in the Dutch, Finnish and Hungarian populations.
Eur. J. Hum. Genet.
PUBLISHED: 02-16-2011
Show Abstract
Hide Abstract
Celiac disease is an inflammatory enteropathy caused by intolerance to gluten. Previous linkage studies in the Dutch, Finnish and Hungarian populations have revealed a locus on chromosome 6q21-22 conferring susceptibility to celiac disease. This locus has previously been implicated in susceptibility to other autoimmune diseases such as Crohns disease and type 1 diabetes. We performed fine mapping on 446 independent individuals with celiac disease and 641 controls of Dutch origin, testing 872 tagging SNPs in a 22 Mb region of chromosome 6. The 12 most promising SNPs were followed up in 2071 individuals from 284 Finnish and 357 Hungarian celiac disease families to identify risk variants in this region. Multiple markers in the region were significantly associated with celiac disease in the Dutch material. Two SNPs, rs9391227 and rs4946111, were significantly associated with celiac disease in the Finnish population. The association to rs9391227 represents the strongest association signal found in the Finnish (P = 0.003, OR 0.66) as well as the combined Dutch, Finnish and Hungarian populations (P = 3.6 × 10(-5), OR 0.76). The rs9391227 is situated downstream of the HECT domain and ankyrin repeat containing, E3 ubiquitin protein ligase 1 (HACE1) gene and is contained within a region of strong linkage disequilibrium enclosing HACE1. Two additional, independent, susceptibility variants in the 6q21-22 region were also found in a meta-analysis of the three populations. The 6q21-22 region was confirmed as a celiac disease susceptibility locus and harbors multiple independent associations, some of which may implicate ubiquitin-pathways in celiac disease susceptibility.
Related JoVE Video
Evolutionary and functional analysis of celiac risk loci reveals SH2B3 as a protective factor against bacterial infection.
Am. J. Hum. Genet.
PUBLISHED: 06-22-2010
Show Abstract
Hide Abstract
Celiac disease (CD) is an intolerance to dietary proteins of wheat, barley, and rye. CD may have substantial morbidity, yet it is quite common with a prevalence of 1%-2% in Western populations. It is not clear why the CD phenotype is so prevalent despite its negative effects on human health, especially because appropriate treatment in the form of a gluten-free diet has only been available since the 1950s, when dietary gluten was discovered to be the triggering factor. The high prevalence of CD might suggest that genes underlying this disease may have been favored by the process of natural selection. We assessed signatures of selection for ten confirmed CD-associated loci in several genome-wide data sets, comprising 8154 controls from four European populations and 195 individuals from a North African population, by studying haplotype lengths via the integrated haplotype score (iHS) method. Consistent signs of positive selection for CD-associated derived alleles were observed in three loci: IL12A, IL18RAP, and SH2B3. For the SH2B3 risk allele, we also show a difference in allele frequency distribution (Fst) between HapMap phase II populations. Functional investigation of the effect of the SH2B3 genotype in response to lipopolysaccharide and muramyl dipeptide revealed that carriers of the SH2B3 rs3184504*A risk allele showed stronger activation of the NOD2 recognition pathway. This suggests that SH2B3 plays a role in protection against bacteria infection, and it provides a possible explanation for the selective sweep on SH2B3, which occurred sometime between 1200 and 1700 years ago.
Related JoVE Video
Genetic variation of the Fc gamma receptor 3B gene and association with rheumatoid arthritis.
PLoS ONE
PUBLISHED: 06-03-2010
Show Abstract
Hide Abstract
Fc gamma receptors (Fc?Rs) play a crucial role in immunity by linking IgG antibody-mediated responses with cellular effector and regulatory functions. Genetic variants in these receptors have been previously identified as risk factors for several chronic inflammatory conditions. The present study aimed to investigate the presence of copy number variations (CNVs) in the FCGR3B gene and its potential association with the autoimmune disease rheumatoid arthritis (RA).
Related JoVE Video
Genome-wide association study meta-analysis identifies seven new rheumatoid arthritis risk loci.
Nat. Genet.
PUBLISHED: 02-25-2010
Show Abstract
Hide Abstract
To identify new genetic risk factors for rheumatoid arthritis, we conducted a genome-wide association study meta-analysis of 5,539 autoantibody-positive individuals with rheumatoid arthritis (cases) and 20,169 controls of European descent, followed by replication in an independent set of 6,768 rheumatoid arthritis cases and 8,806 controls. Of 34 SNPs selected for replication, 7 new rheumatoid arthritis risk alleles were identified at genome-wide significance (P < 5 x 10(-8)) in an analysis of all 41,282 samples. The associated SNPs are near genes of known immune function, including IL6ST, SPRED2, RBPJ, CCR6, IRF5 and PXK. We also refined associations at two established rheumatoid arthritis risk loci (IL2RA and CCL21) and confirmed the association at AFF3. These new associations bring the total number of confirmed rheumatoid arthritis risk loci to 31 among individuals of European ancestry. An additional 11 SNPs replicated at P < 0.05, many of which are validated autoimmune risk alleles, suggesting that most represent genuine rheumatoid arthritis risk alleles.
Related JoVE Video
Multiple common variants for celiac disease influencing immune gene expression.
Nat. Genet.
PUBLISHED: 02-04-2010
Show Abstract
Hide Abstract
We performed a second-generation genome-wide association study of 4,533 individuals with celiac disease (cases) and 10,750 control subjects. We genotyped 113 selected SNPs with P(GWAS) < 10(-4) and 18 SNPs from 14 known loci in a further 4,918 cases and 5,684 controls. Variants from 13 new regions reached genome-wide significance (P(combined) < 5 x 10(-8)); most contain genes with immune functions (BACH2, CCR4, CD80, CIITA-SOCS1-CLEC16A, ICOSLG and ZMIZ1), with ETS1, RUNX3, THEMIS and TNFRSF14 having key roles in thymic T-cell selection. There was evidence to suggest associations for a further 13 regions. In an expression quantitative trait meta-analysis of 1,469 whole blood samples, 20 of 38 (52.6%) tested loci had celiac risk variants correlated (P < 0.0028, FDR 5%) with cis gene expression.
Related JoVE Video
Intestinal barrier gene variants may not explain the increased levels of antigliadin antibodies, suggesting other mechanisms than altered permeability.
Hum. Immunol.
PUBLISHED: 01-15-2010
Show Abstract
Hide Abstract
Various genes may influence intestinal barrier function, including MAGI2, MYO9B, and PARD3, which are associated with celiac disease. Because direct measurement of intestinal permeability is difficult, antibodies against gliadin (AGA) and Bakers yeast (anti-Saccharomyces cerevisiae antibodies [ASCA]) can be used as an indirect test. The objective of this study was to investigate whether intestinal permeability, represented by AGA, was correlated with MAGI2, MYO9B, and PARD3. Analyses were performed in patients with Down syndrome, a population with suspected increased intestinal permeability. Correlations between AGA and ASCA were investigated. Patients with Down syndrome (n = 126) were genotyped for six single-nucleotide polymorphisms in MAGI2 (rs1496770, rs6962966, rs9640699), MYO9B (rs1457092, rs2305764), and PARD3 (rs10763976). An allele dosage association of these risk genes and AGA levels was performed. The correlation between AGA and ASCA was studied. A strong correlation was found between AGA and ASCA (p < 0.01). The patient group with one or more risk genotypes had lower mean AGA levels (trend test p = 0.007) and consisted of a larger number of patients with normal AGA levels (p = 9.3 x 10(-5)). Celiac-associated risk genotypes are associated with lower AGA values instead of elevated ones. Thus, other immunologic phenomena play a role in the increased prevalence of elevated AGA in patients with Down syndrome, possibly involving altered induction and/or maintenance of tolerance.
Related JoVE Video
Common and different genetic background for rheumatoid arthritis and coeliac disease.
Hum. Mol. Genet.
PUBLISHED: 07-31-2009
Show Abstract
Hide Abstract
Recent genome-wide association studies (GWAS) have revealed genetic risk factors in autoimmune and inflammatory disorders. Several of the associated genes and underlying pathways are shared by various autoimmune diseases. Rheumatoid arthritis (RA) and coeliac disease (CD) are two autoimmune disorders which have commonalities in their pathogenesis. We aimed to replicate known RA loci in a Dutch RA population, and to investigate whether the effect of known RA and CD risk factors generalize across the two diseases. We selected all loci associated to either RA or CD in a GWAS and confirmed in an independent cohort, with a combined P-value cut-off P < 5 x 10(-6). We genotyped 11 RA and 11 CD loci in 1368 RA patients, 795 CD patients and 1683 Dutch controls. We combined our results in a meta-analysis with UK GWAS on RA (1860 cases; 2938 controls) and CD (767 cases; 1422 controls). In the Dutch RA cohort, the PTPN22 and IL2/IL21 variants showed convincing association (P = 3.4 x 10(-12) and P = 2.8 x 10(-4), respectively). Association of RA with the known CD risk variant in the SH2B3 was also observed, predominantly in the subgroup of rheumatoid factor-positive RA patients (P = 0.0055). In a meta-analysis of Dutch and UK data sets, shared association with six loci (TNFAIP3, IL2/IL21, SH2B3, LPP, MMEL1/TNFRSF14 and PFKFB3/PRKCQ) was observed in both RA and CD cohorts. We confirmed two known loci and identified four novel ones for shared CD-RA genetic risk. Most of the shared loci further emphasize a role for adaptive and innate immunity in these diseases.
Related JoVE Video
Analysis of HLA and non-HLA alleles can identify individuals at high risk for celiac disease.
Gastroenterology
PUBLISHED: 02-17-2009
Show Abstract
Hide Abstract
Celiac disease (CD) is a common chronic disorder of the small intestine, resulting from aberrant cellular responses to gluten peptides, and often remains undiagnosed. It is a complex genetic disorder, although 95% of the patients carry the risk heterodimer human leukocyte antigen (HLA)-DQ2. Genome-wide association studies on CD have identified 9 non-HLA loci that also contribute to CD risk, most of which are shared with other immune-related diseases. Our aim is to predict the genetic risk for CD using HLA and non-HLA risk alleles.
Related JoVE Video
Detecting shared pathogenesis from the shared genetics of immune-related diseases.
Nat. Rev. Genet.
PUBLISHED: 01-31-2009
Show Abstract
Hide Abstract
Recent genetic studies have revealed shared immunological mechanisms in several immune-related disorders that further our understanding of the development and concomitance of these diseases. Our Review focuses on these shared aspects, using the novel findings of recently performed genome-wide association studies and non-synonymous SNP scans as a starting point. We discuss how identifying new genes that are associated with more than one autoimmune or chronic inflammatory disorder could explain the genetic basis of the shared pathogenesis of immune-related diseases. This analysis helps to highlight the key molecular pathways that are involved in these disorders and the potential roles of novel genes in immune-related diseases.
Related JoVE Video
Rare, low-frequency, and common variants in the protein-coding sequence of biological candidate genes from GWASs contribute to risk of rheumatoid arthritis.
Am. J. Hum. Genet.
Show Abstract
Hide Abstract
The extent to which variants in the protein-coding sequence of genes contribute to risk of rheumatoid arthritis (RA) is unknown. In this study, we addressed this issue by deep exon sequencing and large-scale genotyping of 25 biological candidate genes located within RA risk loci discovered by genome-wide association studies (GWASs). First, we assessed the contribution of rare coding variants in the 25 genes to the risk of RA in a pooled sequencing study of 500 RA cases and 650 controls of European ancestry. We observed an accumulation of rare nonsynonymous variants exclusive to RA cases in IL2RA and IL2RB (burden test: p = 0.007 and p = 0.018, respectively). Next, we assessed the aggregate contribution of low-frequency and common coding variants to the risk of RA by dense genotyping of the 25 gene loci in 10,609 RA cases and 35,605 controls. We observed a strong enrichment of coding variants with a nominal signal of association with RA (p < 0.05) after adjusting for the best signal of association at the loci (p(enrichment) = 6.4 × 10(-4)). For one locus containing CD2, we found that a missense variant, rs699738 (c.798C>A [p.His266Gln]), and a noncoding variant, rs624988, reside on distinct haplotypes and independently contribute to the risk of RA (p = 4.6 × 10(-6)). Overall, our results indicate that variants (distributed across the allele-frequency spectrum) within the protein-coding portion of a subset of biological candidate genes identified by GWASs contribute to the risk of RA. Further, we have demonstrated that very large sample sizes will be required for comprehensively identifying the independent alleles contributing to the missing heritability of RA.
Related JoVE Video
High-density genetic mapping identifies new susceptibility loci for rheumatoid arthritis.
Nat. Genet.
Show Abstract
Hide Abstract
Using the Immunochip custom SNP array, which was designed for dense genotyping of 186 loci identified through genome-wide association studies (GWAS), we analyzed 11,475 individuals with rheumatoid arthritis (cases) of European ancestry and 15,870 controls for 129,464 markers. We combined these data in a meta-analysis with GWAS data from additional independent cases (n = 2,363) and controls (n = 17,872). We identified 14 new susceptibility loci, 9 of which were associated with rheumatoid arthritis overall and five of which were specifically associated with disease that was positive for anticitrullinated peptide antibodies, bringing the number of confirmed rheumatoid arthritis risk loci in individuals of European ancestry to 46. We refined the peak of association to a single gene for 19 loci, identified secondary independent effects at 6 loci and identified association to low-frequency variants at 4 loci. Bioinformatic analyses generated strong hypotheses for the causal SNP at seven loci. This study illustrates the advantages of dense SNP mapping analysis to inform subsequent functional investigations.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.