JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Important role of CYP2J2 in protein kinase inhibitor degradation: a possible role in intratumor drug disposition and resistance.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
We have investigated in vitro the metabolic capability of 3 extrahepatic cytochromes P-450, CYP1A1, 1B1 and 2J2, known to be over-expressed in various tumors, to biotransform 5 tyrosine kinase inhibitors (TKI): dasatinib, imatinib, nilotinib, sorafenib and sunitinib. Moreover, mRNA expression of CYP1A1, 1B1, 2J2 and 3A4 in 6 hepatocellular and 14 renal cell carcinoma tumor tissues and their surrounding healthy tissues, was determined. Our results show that CYP1A1, 1B1 and especially 2J2 can rapidly biotransform the studied TKIs with a metabolic efficiency similar to that of CYP3A4. The mRNA expression of CYP1A1, 1B1, 2J2 and 3A4 in tumor biopsies has shown i) the strong variability of CYP expression and ii) distinct outliers showing high expression levels (esp. CYP2J2) that are compatible with high intratumoral CYP activity and tumor-specific TKI degradation. CYP2J2 inhibition could be a novel clinical strategy to specifically increase the intratumoral rather than plasma TKI levels, improving TKI efficacy and extending the duration before relapse. Such an approach would be akin to beta-lactamase inhibition, a classical strategy to avoid antibiotic degradation and resistance.
Related JoVE Video
Validation of hepcidin quantification in plasma using LC-HRMS and discovery of a new hepcidin isoform.
Bioanalysis
PUBLISHED: 10-22-2013
Show Abstract
Hide Abstract
Hepcidin, a 25 amino acid peptide, plays an important role in iron homeostasis. Some hepcidin truncated peptides have antibiotic effects.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.