JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Pre-operative cellularity mapping and intra-MRI surgery: potential for improving neurosurgical biopsies.
Expert Rev Med Devices
PUBLISHED: 11-07-2014
Show Abstract
Hide Abstract
Stereotactic biopsies are frequently performed to secure definitive diagnosis for brain tumor patients. Fundamentally, there are two major difficulties in these endeavors. First, because of intra-tumoral heterogeneity inherent in many forms of brain cancer, biopsies taken from one region may yield a different diagnosis than if another area is biopsied. Second, stereotactic needle biopsies inherently rely on mathematical algorithms for targeting, without real-time visualization of the actual biopsy site. This article describes the novel MRI-based technologies that can potentially afford neurosurgeons the opportunity to address these challenges.
Related JoVE Video
Neuropsychiatric symptoms and regional neocortical atrophy in mild cognitive impairment and Alzheimer's disease.
Am J Alzheimers Dis Other Demen
PUBLISHED: 10-23-2014
Show Abstract
Hide Abstract
To assess the relationship between regional neocortical atrophy and psychotic symptoms in adults with mild cognitive impairment (MCI) and Alzheimer's disease (AD).
Related JoVE Video
Baseline Shape Diffeomorphometry Patterns of Subcortical and Ventricular Structures in Predicting Conversion of Mild Cognitive Impairment to Alzheimer's Disease.
J. Alzheimers Dis.
PUBLISHED: 10-17-2014
Show Abstract
Hide Abstract
In this paper, we propose a novel predictor for the conversion from mild cognitive impairment (MCI) to Alzheimer's disease (AD). This predictor is based on the shape diffeomorphometry patterns of subcortical and ventricular structures (left and right amygdala, hippocampus, thalamus, caudate, putamen, globus pallidus, and lateral ventricle) of 607 baseline scans from the Alzheimer's Disease Neuroimaging Initiative database, including a total of 210 healthy control subjects, 222 MCI subjects, and 175 AD subjects. The optimal predictor is obtained via a feature selection procedure applied to all of the 14 sets of shape features via linear discriminant analysis, resulting in a combination of the shape diffeomorphometry patterns of the left hippocampus, the left lateral ventricle, the right thalamus, the right caudate, and the bilateral putamen. Via 10-fold cross-validation, we substantiate our method by successfully differentiating 77.04% (104/135) of the MCI subjects who converted to AD within 36 months and 71.26% (62/87) of the non-converters. To be specific, for the MCI-converters, we are capable of correctly predicting 82.35% (14/17) of subjects converting in 6 months, 77.5% (31/40) of subjects converting in 12 months, 74.07% (20/27) of subjects converting in 18 months, 78.13% (25/32) of subjects converting in 24 months, and 73.68% (14/19) of subject converting in 36 months. Statistically significant correlation maps were observed between the shape diffeomorphometry features of each of the 14 structures, especially the bilateral amygdala, hippocampus, lateral ventricle, and two neuropsychological test scores-the Alzheimer's Disease Assessment Scale-Cognitive Behavior Section and the Mini-Mental State Examination.
Related JoVE Video
APOE interacts with age to modify rate of decline in cognitive and brain changes in Alzheimer's disease.
Alzheimers Dement
PUBLISHED: 09-12-2014
Show Abstract
Hide Abstract
To determine (1) whether age-standardized cognitive declines and brain morphometric change differ between Young-Old patients with Alzheimer's disease (YOAD) and Very-Old patients with Alzheimer's disease (VOAD), and (2) whether the apolipoprotein E (APOE) genotype modifies these neuropsychological and morphometric changes.
Related JoVE Video
Diffusion-weighted imaging in cancer: physical foundations and applications of restriction spectrum imaging.
Cancer Res.
PUBLISHED: 09-04-2014
Show Abstract
Hide Abstract
Diffusion-weighted imaging (DWI) has been at the forefront of cancer imaging since the early 2000s. Before its application in clinical oncology, this powerful technique had already achieved widespread recognition due to its utility in the diagnosis of cerebral infarction. Following this initial success, the ability of DWI to detect inherent tissue contrast began to be exploited in the field of oncology. Although the initial oncologic applications for tumor detection and characterization, assessing treatment response, and predicting survival were primarily in the field of neurooncology, the scope of DWI has since broadened to include oncologic imaging of the prostate gland, breast, and liver. Despite its growing success and application, misconceptions about the underlying physical basis of the DWI signal exist among researchers and clinicians alike. In this review, we provide a detailed explanation of the biophysical basis of diffusion contrast, emphasizing the difference between hindered and restricted diffusion, and elucidating how diffusion parameters in tissue are derived from the measurements via the diffusion model. We describe one advanced DWI modeling technique, called restriction spectrum imaging (RSI). This technique offers a more direct in vivo measure of tumor cells, due to its ability to distinguish separable pools of water within tissue based on their intrinsic diffusion characteristics. Using RSI as an example, we then highlight the ability of advanced DWI techniques to address key clinical challenges in neurooncology, including improved tumor conspicuity, distinguishing actual response to therapy from pseudoresponse, and delineation of white matter tracts in regions of peritumoral edema. We also discuss how RSI, combined with new methods for correction of spatial distortions inherent in diffusion MRI scans, may enable more precise spatial targeting of lesions, with implications for radiation oncology and surgical planning. See all articles in this Cancer Research section, "Physics in Cancer Research."
Related JoVE Video
Combining diffusion and perfusion differentiates tumor from bevacizumab-related imaging abnormality (bria).
J. Neurooncol.
PUBLISHED: 08-19-2014
Show Abstract
Hide Abstract
A subset of patients with high-grade glioma and brain metastases who are treated with bevacizumab develop regions of marked and persistent restricted diffusion that do not reflect recurrent tumor. Here, we quantify the degree of restricted diffusion and the relative cerebral blood volume (rCBV) within these regions of bevacizumab-related imaging abnormality (BRIA) in order to facilitate differentiation of these lesions from recurrent tumor. Six patients with high-grade glioma and two patients with brain metastases who developed regions of restricted diffusion after initiation of bevacizumab were included. Six pre-treatment GBM controls were also included. Restriction spectrum imaging (RSI) was used to create diffusion maps which were co-registered with rCBV maps. Within regions of restricted diffusion, mean RSI values and mean rCBV values were calculated for patients with BRIA and for the GBM controls. These values were also calculated for normal-appearing white matter (NAWM). RSI values in regions of restricted diffusion were higher for both BRIA and tumor when compared to NAWM; furthermore RSI values in BRIA were slightly higher than in tumor. Conversely, rCBV values were very low in BRIA-lower than both tumor and NAWM. However, there was only a trend for rCBV values to be higher in tumor than in NAWM. When evaluating areas of restricted diffusion in patients with high-grade glioma or brain metastases treated with bevacizumab, RSI is better able to detect the presence of pathology whereas rCBV is better able to differentiate BRIA from tumor. Thus, combining these tools may help to differentiate necrotic tissue related to bevacizumab treatment from recurrent tumor.
Related JoVE Video
Structural growth trajectories and rates of change in the first 3 months of infant brain development.
JAMA Neurol
PUBLISHED: 08-12-2014
Show Abstract
Hide Abstract
The very early postnatal period witnesses extraordinary rates of growth, but structural brain development in this period has largely not been explored longitudinally. Such assessment may be key in detecting and treating the earliest signs of neurodevelopmental disorders.
Related JoVE Video
Hippocampal Atrophy Varies by Neuropsychologically Defined MCI Among Men in Their 50s.
Am J Geriatr Psychiatry
PUBLISHED: 08-06-2014
Show Abstract
Hide Abstract
In an effort to address earliest detection of mild cognitive impairment (MCI), we examined hippocampal volumes and atrophy in middle-aged men to explore neuroanatomical support for different neuropsychological definitions of MCI.
Related JoVE Video
In Vivo Hippocampal Subfield Volumes in Schizophrenia and Bipolar Disorder.
Biol. Psychiatry
PUBLISHED: 07-03-2014
Show Abstract
Hide Abstract
Hippocampal dysfunction and volume reductions have been reported in patients with schizophrenia and bipolar disorder. The hippocampus consists of anatomically distinct subfields. We investigated to determine whether in vivo volumes of hippocampal subfields differ between clinical groups and healthy control subjects.
Related JoVE Video
Inhomogeneous static magnetic field-induced distortion correction applied to diffusion weighted MRI of the breast at 3T.
Magn Reson Med
PUBLISHED: 06-16-2014
Show Abstract
Hide Abstract
To evaluate the performance of an advanced method for correction of inhomogeneous static magnetic field induced distortion in echo-planar imaging (EPI), applied to diffusion-weighted MRI (DWI) of the breast.
Related JoVE Video
Shared common variants in prostate cancer and blood lipids.
Int J Epidemiol
PUBLISHED: 04-30-2014
Show Abstract
Hide Abstract
Epidemiological and clinical studies suggest comorbidity between prostate cancer (PCA) and cardiovascular disease (CVD) risk factors. However, the relationship between these two phenotypes is still not well understood. Here we sought to identify shared genetic loci between PCA and CVD risk factors.
Related JoVE Video
Covariate-modulated local false discovery rate for genome-wide association studies.
Bioinformatics
PUBLISHED: 04-07-2014
Show Abstract
Hide Abstract
Genome-wide association studies (GWAS) have largely failed to identify most of the genetic basis of highly heritable diseases and complex traits. Recent work has suggested this could be because many genetic variants, each with individually small effects, compose their genetic architecture, limiting the power of GWAS, given currently obtainable sample sizes. In this scenario, Bonferroni-derived thresholds are severely underpowered to detect the vast majority of associations. Local false discovery rate (fdr) methods provide more power to detect non-null associations, but implicit assumptions about the exchangeability of single nucleotide polymorphisms (SNPs) limit their ability to discover non-null loci.
Related JoVE Video
Effects of cognitive training on gray matter volumes in memory clinic patients with subjective memory impairment.
J. Alzheimers Dis.
PUBLISHED: 04-02-2014
Show Abstract
Hide Abstract
Subjective memory impairment (SMI) is a common risk factor for Alzheimer's disease, with few established options for treatment. Here we investigate the effects of two months episodic memory training on regional brain atrophy in 19 memory clinic patients with SMI. We used a sensitive longitudinal magnetic resonance imaging protocol and compared the patients with 42 matched healthy volunteers randomly assigned to a group performing the same training, or a no-training control group. Following intervention, the SMI sample exhibited structural gray matter volume increases in brain regions encompassing the episodic memory network, with cortical volume expansion of comparable extent as healthy training participants. Further, we found significant hippocampal volume increases in the healthy training group but not in the SMI group. Still, individual differences in left hippocampal volume change in the patient group were related to verbal recall improvement following training. The present results reinforce earlier studies indicating intact brain plasticity in aging, and further suggest that training-related brain changes can be evident also in the earliest form of cognitive impairment.
Related JoVE Video
Regional hippocampal volumes and development predict learning and memory.
Dev. Neurosci.
PUBLISHED: 03-24-2014
Show Abstract
Hide Abstract
The hippocampus is an anatomically and functionally heterogeneous structure, but longitudinal studies of its regional development are scarce and it is not known whether protracted maturation of the hippocampus in adolescence is related to memory development. First, we investigated hippocampal subfield development using 170 longitudinally acquired brain magnetic resonance imaging scans from 85 participants aged 8-21 years. Hippocampal subfield volumes were estimated by the use of automated segmentation of 7 subfields, including the cornu ammonis (CA) sectors and the dentate gyrus (DG), while longitudinal subfield volumetric change was quantified using a nonlinear registration procedure. Second, associations between subfield volumes and change and verbal learning/memory across multiple retention intervals (5 min, 30 min and 1 week) were tested. It was hypothesized that short and intermediate memory would be more closely related to CA2-3/CA4-DG and extended, remote memory to CA1. Change rates were significantly different across hippocampal subfields, but nearly all subfields showed significant volume decreases over time throughout adolescence. Several subfield volumes were larger in the right hemisphere and in males, while for change rates there were no hemisphere or sex differences. Partly in support of the hypotheses, greater volume of CA1 and CA2-3 was related to recall and retention after an extended delay, while longitudinal reduction of CA2-3 and CA4-DG was related to learning. This suggests continued regional development of the hippocampus across adolescence and that volume and volume change in specific subfields differentially predict verbal learning and memory over different retention intervals, but future high-resolution studies are called for.
Related JoVE Video
The Genetic Association Between Neocortical Volume and General Cognitive Ability Is Driven by Global Surface Area Rather Than Thickness.
Cereb. Cortex
PUBLISHED: 02-21-2014
Show Abstract
Hide Abstract
Total gray matter volume is associated with general cognitive ability (GCA), an association mediated by genetic factors. It is expectable that total neocortical volume should be similarly associated with GCA. Neocortical volume is the product of thickness and surface area, but global thickness and surface area are unrelated phenotypically and genetically in humans. The nature of the genetic association between GCA and either of these 2 cortical dimensions has not been examined. Humans possess greater cognitive capacity than other species, and surface area increases appear to be the primary driver of the increased size of the human cortex. Thus, we expected neocortical surface area to be more strongly associated with cognition than thickness. Using multivariate genetic analysis in 515 middle-aged twins, we demonstrated that both the phenotypic and genetic associations between neocortical volume and GCA are driven primarily by surface area rather than thickness. Results were generally similar for each of 4 specific cognitive abilities that comprised the GCA measure. Our results suggest that emphasis on neocortical surface area, rather than thickness, could be more fruitful for elucidating neocortical-GCA associations and identifying specific genes underlying those associations.
Related JoVE Video
Comparison of optical and MR-based tracking.
Magn Reson Med
PUBLISHED: 02-12-2014
Show Abstract
Hide Abstract
The goal of this study was to compare the accuracy of two real-time motion tracking systems in the MR environment: MR-based prospective motion correction (PROMO) and optical moiré phase tracking (MPT).
Related JoVE Video
Brain volume reductions in adolescent heavy drinkers.
Dev Cogn Neurosci
PUBLISHED: 02-05-2014
Show Abstract
Hide Abstract
Brain abnormalities in adolescent heavy drinkers may result from alcohol exposure, or stem from pre-existing neural features.
Related JoVE Video
What is normal in normal aging? Effects of aging, amyloid and Alzheimer's disease on the cerebral cortex and the hippocampus.
Prog. Neurobiol.
PUBLISHED: 02-05-2014
Show Abstract
Hide Abstract
What can be expected in normal aging, and where does normal aging stop and pathological neurodegeneration begin? With the slow progression of age-related dementias such as Alzheimer's disease (AD), it is difficult to distinguish age-related changes from effects of undetected disease. We review recent research on changes of the cerebral cortex and the hippocampus in aging and the borders between normal aging and AD. We argue that prominent cortical reductions are evident in fronto-temporal regions in elderly even with low probability of AD, including regions overlapping the default mode network. Importantly, these regions show high levels of amyloid deposition in AD, and are both structurally and functionally vulnerable early in the disease. This normalcy-pathology homology is critical to understand, since aging itself is the major risk factor for sporadic AD. Thus, rather than necessarily reflecting early signs of disease, these changes may be part of normal aging, and may inform on why the aging brain is so much more susceptible to AD than is the younger brain. We suggest that regions characterized by a high degree of life-long plasticity are vulnerable to detrimental effects of normal aging, and that this age-vulnerability renders them more susceptible to additional, pathological AD-related changes. We conclude that it will be difficult to understand AD without understanding why it preferably affects older brains, and that we need a model that accounts for age-related changes in AD-vulnerable regions independently of AD-pathology.
Related JoVE Video
Maturation of Cortico-Subcortical Structural Networks--Segregation and Overlap of Medial Temporal and Fronto-Striatal Systems in Development.
Cereb. Cortex
PUBLISHED: 01-18-2014
Show Abstract
Hide Abstract
The brain consists of partly segregated neural circuits within which structural convergence and functional integration occurs during development. The relationship of structural cortical and subcortical maturation is largely unknown. We aimed to study volumetric development of the hippocampus and basal ganglia (caudate, putamen, pallidum, accumbens) in relation to volume changes throughout the cortex. Longitudinal MRI data were obtained across a mean interval of 2.6 years in 85 participants with an age range of 8-19 years at study start. Left and right subcortical changes were related to cortical change vertex-wise in the ipsilateral hemisphere with general linear models with age, sex, interval between scans, and mean cortical volume change as covariates. Hippocampal-cortical change relationships centered on parts of the Papez circuit, including entorhinal, parahippocampal, and isthmus cingulate areas, and lateral temporal, insular, and orbitofrontal cortices in the left hemisphere. Basal ganglia-cortical change relationships were observed in mostly nonoverlapping and more anterior cortical areas, all including the anterior cingulate. Other patterns were unique to specific basal ganglia structures, including pre-, post-, and paracentral patterns relating to putamen change. In conclusion, patterns of cortico-subcortical development as assessed by morphometric analyses in part map out segregated neural circuits at the macrostructural level.
Related JoVE Video
Shape abnormalities of subcortical and ventricular structures in mild cognitive impairment and Alzheimer's disease: detecting, quantifying, and predicting.
Hum Brain Mapp
PUBLISHED: 01-17-2014
Show Abstract
Hide Abstract
This article assesses the feasibility of using shape information to detect and quantify the subcortical and ventricular structural changes in mild cognitive impairment (MCI) and Alzheimer's disease (AD) patients. We first demonstrate structural shape abnormalities in MCI and AD as compared with healthy controls (HC). Exploring the development to AD, we then divide the MCI participants into two subgroups based on longitudinal clinical information: (1) MCI patients who remained stable; (2) MCI patients who converted to AD over time. We focus on seven structures (amygdala, hippocampus, thalamus, caudate, putamen, globus pallidus, and lateral ventricles) in 754 MR scans (210 HC, 369 MCI of which 151 converted to AD over time, and 175 AD). The hippocampus and amygdala were further subsegmented based on high field 0.8 mm isotropic 7.0T scans for finer exploration. For MCI and AD, prominent ventricular expansions were detected and we found that these patients had strongest hippocampal atrophy occurring at CA1 and strongest amygdala atrophy at the basolateral complex. Mild atrophy in basal ganglia structures was also detected in MCI and AD. Stronger atrophy in the amygdala and hippocampus, and greater expansion in ventricles was observed in MCI converters, relative to those MCI who remained stable. Furthermore, we performed principal component analysis on a linear shape space of each structure. A subsequent linear discriminant analysis on the principal component values of hippocampus, amygdala, and ventricle leads to correct classification of 88% HC subjects and 86% AD subjects.
Related JoVE Video
Identifying common genetic variants in blood pressure due to polygenic pleiotropy with associated phenotypes.
Hypertension
PUBLISHED: 01-06-2014
Show Abstract
Hide Abstract
Blood pressure is a critical determinant of cardiovascular morbidity and mortality. It is affected by environmental factors, but has a strong heritable component. Despite recent large genome-wide association studies, few genetic risk factors for blood pressure have been identified. Epidemiological studies suggest associations between blood pressure and several diseases and traits, which may partly arise from a shared genetic basis (genetic pleiotropy). Using genome-wide association studies summary statistics and a genetic pleiotropy-informed conditional false discovery rate method, we systematically investigated genetic overlap between systolic blood pressure (SBP) and 12 comorbid traits and diseases. We found significant enrichment of single nucleotide polymorphisms associated with SBP as a function of their association with body mass index, low-density lipoprotein, waist/hip ratio, schizophrenia, bone mineral density, type 1 diabetes mellitus, and celiac disease. In contrast, the magnitude of enrichment due to shared polygenic effects was smaller with the other phenotypes (triglycerides, high-density lipoproteins, type 2 diabetes mellitus, rheumatoid arthritis, and height). Applying the conditional false discovery rate method to the enriched phenotypes, we identified 62 loci associated with SBP (false discovery rate <0.01), including 42 novel loci. The observed polygenic overlap between SBP and several related disorders indicates that the epidemiological associations are not mediated solely via lifestyle factors but also reflect an etiologic relation that warrants further investigation. The new gene loci identified implicate novel genetic mechanisms related to lipid biology and the immune system in SBP.
Related JoVE Video
Neurovascular Network Explorer 1.0: a database of 2-photon single-vessel diameter measurements with MATLAB(®) graphical user interface.
Front Neuroinform
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
We present a database client software-Neurovascular Network Explorer 1.0 (NNE 1.0)-that uses MATLAB(®) based Graphical User Interface (GUI) for interaction with a database of 2-photon single-vessel diameter measurements from our previous publication (Tian et al., 2010). These data are of particular interest for modeling the hemodynamic response. NNE 1.0 is downloaded by the user and then runs either as a MATLAB script or as a standalone program on a Windows platform. The GUI allows browsing the database according to parameters specified by the user, simple manipulation and visualization of the retrieved records (such as averaging and peak-normalization), and export of the results. Further, we provide NNE 1.0 source code. With this source code, the user can database their own experimental results, given the appropriate data structure and naming conventions, and thus share their data in a user-friendly format with other investigators. NNE 1.0 provides an example of seamless and low-cost solution for sharing of experimental data by a regular size neuroscience laboratory and may serve as a general template, facilitating dissemination of biological results and accelerating data-driven modeling approaches.
Related JoVE Video
A web-portal for interactive data exploration, visualization, and hypothesis testing.
Front Neuroinform
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Clinical research studies generate data that need to be shared and statistically analyzed by their participating institutions. The distributed nature of research and the different domains involved present major challenges to data sharing, exploration, and visualization. The Data Portal infrastructure was developed to support ongoing research in the areas of neurocognition, imaging, and genetics. Researchers benefit from the integration of data sources across domains, the explicit representation of knowledge from domain experts, and user interfaces providing convenient access to project specific data resources and algorithms. The system provides an interactive approach to statistical analysis, data mining, and hypothesis testing over the lifetime of a study and fulfills a mandate of public sharing by integrating data sharing into a system built for active data exploration. The web-based platform removes barriers for research and supports the ongoing exploration of data.
Related JoVE Video
Atypical right hemisphere specialization for object representations in an adolescent with specific language impairment.
Front Hum Neurosci
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Individuals with a diagnosis of specific language impairment (SLI) show abnormal spoken language occurring alongside normal non-verbal abilities. Behaviorally, people with SLI exhibit diverse profiles of impairment involving phonological, grammatical, syntactic, and semantic aspects of language. In this study, we used a multimodal neuroimaging technique called anatomically constrained magnetoencephalography (aMEG) to measure the dynamic functional brain organization of an adolescent with SLI. Using single-subject statistical maps of cortical activity, we compared this patient to a sibling and to a cohort of typically developing subjects during the performance of tasks designed to evoke semantic representations of concrete objects. Localized patterns of brain activity within the language impaired patient showed marked differences from the typical functional organization, with significant engagement of right hemisphere heteromodal cortical regions generally homotopic to the left hemisphere areas that usually show the greatest activity for such tasks. Functional neuroanatomical differences were evident at early sensoriperceptual processing stages and continued through later cognitive stages, observed specifically at latencies typically associated with semantic encoding operations. Our findings show with real-time temporal specificity evidence for an atypical right hemisphere specialization for the representation of concrete entities, independent of verbal motor demands. More broadly, our results demonstrate the feasibility and potential utility of using aMEG to characterize individual patient differences in the dynamic functional organization of the brain.
Related JoVE Video
Boosting the Power of Schizophrenia Genetics by Leveraging New Statistical Tools.
Schizophr Bull
PUBLISHED: 12-06-2013
Show Abstract
Hide Abstract
Genome-wide association studies (GWAS) have identified a large number of gene variants associated with schizophrenia, but these variants explain only a small portion of the heritability. It is becoming increasingly clear that schizophrenia is influenced by many genes, most of which have effects too small to be identified using traditional GWAS statistical methods. By applying recently developed Empirical Bayes statistical approaches, we have demonstrated that functional genic elements show differential contribution to phenotypic variance, with some elements (regulatory regions and exons) showing strong enrichment for association with schizophrenia. Applying related methods, we also showed abundant genetic overlap (pleiotropy) between schizophrenia and other phenotypes, including bipolar disorder, cardiovascular disease risk factors, and multiple sclerosis. We estimated the number of gene variants with effects in schizophrenia and bipolar disorder to be approximately 1.2%. By applying our novel statistical framework, we dramatically improved gene discovery and detected a large number of new gene loci associated with schizophrenia that have not yet been identified with standard GWAS methods. Utilizing independent schizophrenia substudies, we showed that these new loci have high replication rates in de novo samples, indicating that they likely represent true schizophrenia risk genes. The new statistical tools provide a powerful approach for uncovering more of the missing heritability of schizophrenia and other complex disorders. In conclusion, the highly polygenic architecture of schizophrenia strongly suggests the utility of research approaches that recognize schizophrenia neuropathology as a complex dynamic system, with many small gene effects integrated in functional networks.
Related JoVE Video
Conceptual and Data-based Investigation of Genetic Influences and Brain Asymmetry: A Twin Study of Multiple Structural Phenotypes.
J Cogn Neurosci
PUBLISHED: 11-27-2013
Show Abstract
Hide Abstract
Right-left regional cerebral differences are a feature of the human brain linked to functional abilities, aging, and neurodevelopmental and mental disorders. The role of genetic factors in structural asymmetry has been incompletely studied. We analyzed data from 515 individuals (130 monozygotic twin pairs, 97 dizygotic pairs, and 61 unpaired twins) from the Vietnam Era Twin Study of Aging to answer three questions about genetic determinants of brain structural asymmetry: First, does the magnitude of heritability differ for homologous regions in each hemisphere? Despite adequate power to detect regional differences, heritability estimates were not significantly larger in one hemisphere versus the other, except left > right inferior lateral ventricle heritability. Second, do different genetic factors influence left and right hemisphere size in homologous regions? Interhemispheric genetic correlations were high and significant; in only two subcortical regions (pallidum and accumbens) did the estimate statistically differ from 1.0. Thus, there was little evidence for different genetic influences on left and right hemisphere regions. Third, to what extent do genetic factors influence variability in left-right size differences? There was no evidence that variation in asymmetry (i.e., the size difference) of left and right homologous regions was genetically determined, except in pallidum and accumbens. Our findings suggest that genetic factors do not play a significant role in determining individual variation in the degree of regional cortical size asymmetries measured with MRI, although they may do so for volume of some subcortical structures. Despite varying interpretations of existing left-right, we view the present results as consistent with previous findings.
Related JoVE Video
The NIH Toolbox Cognition Battery: Results from a large normative developmental sample (PING).
Neuropsychology
PUBLISHED: 11-11-2013
Show Abstract
Hide Abstract
Objective: The NIH Toolbox Cognition Battery (NTCB) was designed to provide a brief, efficient computerized test of key neuropsychological functions appropriate for use in children as young as 3 years of age. This report describes the performance of a large group of typically developing children and adolescents and examines the impact of age and sociocultural variables on test performance. Method: The NTCB was administered to a sample of 1,020 typically developing males and females ranging in age from 3 to 20 years, diverse in terms of socioeconomic status (SES) and race/ethnicity, as part of the new publicly accessible Pediatric Imaging, Neurocognition, and Genetics (PING) data resource, at 9 sites across the United States. Results: General additive models of nonlinear age-functions were estimated from age-differences in test performance on the 8 NTCB subtests while controlling for family SES and genetic ancestry factors (GAFs). Age accounted for the majority of the variance across all NTCB scores, with additional significant contributions of gender on some measures, and of SES and race/ethnicity (GAFs) on all. After adjusting for age and gender, SES and GAFs explained a substantial proportion of the remaining unexplained variance in Picture Vocabulary scores. Conclusions: The results highlight the sensitivity to developmental effects and efficiency of this new computerized assessment battery for neurodevelopmental research. Limitations are observed in the form of some ceiling effects in older children, some floor effects, particularly on executive function tests in the youngest participants, and evidence for variable measurement sensitivity to cultural/socioeconomic factors. (PsycINFO Database Record (c) 2013 APA, all rights reserved).
Related JoVE Video
Genetic topography of brain morphology.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 09-30-2013
Show Abstract
Hide Abstract
Animal data show that cortical development is initially patterned by genetic gradients largely along three orthogonal axes. We previously reported differences in genetic influences on cortical surface area along an anterior-posterior axis using neuroimaging data of adult human twins. Here, we demonstrate differences in genetic influences on cortical thickness along a dorsal-ventral axis in the same cohort. The phenomenon of orthogonal gradations in cortical organization evident in different structural and functional properties may originate from genetic gradients. Another emerging theme of cortical patterning is that patterns of genetic influences recapitulate the spatial topography of the cortex within hemispheres. The genetic patterning of both cortical thickness and surface area corresponds to cortical functional specializations. Intriguingly, in contrast to broad similarities in genetic patterning, two sets of analyses distinguish cortical thickness and surface area genetically. First, genetic contributions to cortical thickness and surface area are largely distinct; there is very little genetic correlation (i.e., shared genetic influences) between them. Second, organizing principles among genetically defined regions differ between thickness and surface area. Examining the structure of the genetic similarity matrix among clusters revealed that, whereas surface area clusters showed great genetic proximity with clusters from the same lobe, thickness clusters appear to have close genetic relatedness with clusters that have similar maturational timing. The discrepancies are in line with evidence that the two traits follow different mechanisms in neurodevelopment. Our findings highlight the complexity of genetic influences on cortical morphology and provide a glimpse into emerging principles of genetic organization of the cortex.
Related JoVE Video
Distinct effects of nuclear volume fraction and cell diameter on high b-value diffusion MRI contrast in tumors.
Magn Reson Med
PUBLISHED: 06-25-2013
Show Abstract
Hide Abstract
While many recent studies have demonstrated improved detection and characterization of malignant lesions using high b-value diffusion imaging techniques, little is known about the underlying physical characteristics of tumor cells that modulate the restricted water signal at high b on clinical scanners.
Related JoVE Video
Longitudinal working memory development is related to structural maturation of frontal and parietal cortices.
J Cogn Neurosci
PUBLISHED: 06-14-2013
Show Abstract
Hide Abstract
Parallels between patterns of brain maturation and cognitive development have been observed repeatedly, but studies directly testing the relationships between improvements in specific cognitive functions and structural changes in the brain are lacking. Working memory development extends throughout childhood and adolescence and likely plays a central role for cognitive development in multiple domains and in several neurodevelopmental disorders. Neuroimaging, lesion, and electrophysiological studies indicate that working memory emerges from coordinated interactions of a distributed neural network in which fronto-parietal cortical regions are critical. In the current study, verbal working memory function, as indexed by performance on the Keep Track task, and volumes of brain regions were assessed at two time points in 79 healthy children and adolescents in the age range of 8-22 years. Longitudinal change in cortical and subcortical volumes was quantified by the use of Quantitative Anatomical Regional Change. Improvement in working memory was related to cortical volume reduction in bilateral prefrontal and posterior parietal regions and in regions around the central sulci. Importantly, these relationships were not explained by differences in gender, age, or intelligence level or change in intellectual abilities. Furthermore, the relationships did not interact with age and were not significantly different in children, young adolescents, and old adolescents. The results provide the first direct evidence that structural maturation of a fronto-parietal cortical network supports working memory development.
Related JoVE Video
Neocortical correlates of vibrotactile detection in humans.
J Cogn Neurosci
PUBLISHED: 05-17-2013
Show Abstract
Hide Abstract
This study examined the cortical representation of vibrotactile detection in humans using event-related fMRI paired with psychophysics. Suprathreshold vibrotactile stimulation activated several areas, including primary (SI) and second somatosensory cortices (SII/PV). For threshold-level stimuli, poststimulus activity in contralateral and ipsilateral SII/PV was the best correlate of detection success. In these areas, evoked signals on hit trials were significantly greater than on missed trials in all participants, and the relative activity level across stimulation amplitudes matched perceptual performance. Activity in the anterior insula and superior temporal gyrus also correlated with hits and misses, suggesting that a "ventral stream" of somatosensory representations may play a crucial role in detection. In contrast, poststimulus activity in Area SI was not well correlated with perception and showed an overall negative response profile for threshold-level stimulation. A different correlate of detection success was, however, observed in SI. Activity in this representation immediately before stimulus onset predicted performance, a finding that was unique to SI. These findings emphasize the potential role of SII/PV in detection, the importance of state dynamics in SI for perception, and the possibility that changes in the temporal and spatial pattern of SI activity may be essential to the optimal representation of threshold-level stimuli for detection.
Related JoVE Video
In vivo stimulus-induced vasodilation occurs without IP3 receptor activation and may precede astrocytic calcium increase.
J. Neurosci.
PUBLISHED: 05-10-2013
Show Abstract
Hide Abstract
Calcium-dependent release of vasoactive gliotransmitters is widely assumed to trigger vasodilation associated with rapid increases in neuronal activity. Inconsistent with this hypothesis, intact stimulus-induced vasodilation was observed in inositol 1,4,5-triphosphate (IP3) type-2 receptor (R2) knock-out (KO) mice, in which the primary mechanism of astrocytic calcium increase-the release of calcium from intracellular stores following activation of an IP3-dependent pathway-is lacking. Further, our results in wild-type (WT) mice indicate that in vivo onset of astrocytic calcium increase in response to sensory stimulus could be considerably delayed relative to the simultaneously measured onset of arteriolar dilation. Delayed calcium increases in WT mice were observed in both astrocytic cell bodies and perivascular endfeet. Thus, astrocytes may not play a role in the initiation of blood flow response, at least not via calcium-dependent mechanisms. Moreover, an increase in astrocytic intracellular calcium was not required for normal vasodilation in the IP3R2-KO animals.
Related JoVE Video
Brain changes in older adults at very low risk for Alzheimers disease.
J. Neurosci.
PUBLISHED: 05-10-2013
Show Abstract
Hide Abstract
Alzheimers disease (AD) has a slow onset, so it is challenging to distinguish brain changes in healthy elderly persons from incipient AD. One-year brain changes with a distinct frontotemporal pattern have been shown in older adults. However, it is not clear to what extent these changes may have been affected by undetected, early AD. To address this, we estimated 1-year atrophy by magnetic resonance imaging (MRI) in 132 healthy elderly persons who had remained free of diagnosed mild cognitive impairment or AD for at least 3 years. We found significant volumetric reductions throughout the brain. The sample was further divided into low-risk groups based on clinical, biomarker, genetic, or cognitive criteria. Although sample sizes varied, significant reductions were observed in all groups, with rates and topographical distribution of atrophy comparable to that of the full sample. Volume reductions were especially pronounced in the default mode network, closely matching the previously described frontotemporal pattern of changes in healthy aging. Atrophy in the hippocampus predicted change in memory, with no additional default mode network contributions. In conclusion, reductions in regional brain volumes can be detected over the course of 1 year even in older adults who are unlikely to be in a presymptomatic stage of AD.
Related JoVE Video
Heart fatty acid binding protein and A?-associated Alzheimers neurodegeneration.
Mol Neurodegener
PUBLISHED: 05-04-2013
Show Abstract
Hide Abstract
Epidemiological and molecular findings suggest a relationship between Alzheimers disease (AD) and dyslipidemia, although the nature of this association is not well understood.
Related JoVE Video
White matter microstructure correlates of narrative production in typically developing children and children with high functioning autism.
Neuropsychologia
PUBLISHED: 05-01-2013
Show Abstract
Hide Abstract
This study investigated the relationship between white matter microstructure and the development of morphosyntax in a spoken narrative in typically developing children (TD) and in children with high functioning autism (HFA). Autism is characterized by language and communication impairments, yet the relationship between morphosyntactic development in spontaneous discourse contexts and neural development is not well understood in either this population or typical development. Diffusion tensor imaging (DTI) was used to assess multiple parameters of diffusivity as indicators of white matter tract integrity in language-related tracts in children between 6 and 13 years of age. Children were asked to spontaneously tell a story about at time when someone made them sad, mad, or angry. The story was evaluated for morphological accuracy and syntactic complexity. Analysis of the relationship between white matter microstructure and language performance in TD children showed that diffusivity correlated with morphosyntax production in the superior longitudinal fasciculus (SLF), a fiber tract traditionally associated with language. At the anatomical level, the HFA group showed abnormal diffusivity in the right inferior longitudinal fasciculus (ILF) relative to the TD group. Within the HFA group, children with greater white matter integrity in the right ILF displayed greater morphological accuracy during their spoken narrative. Overall, the current study shows an association between white matter structure in a traditional language pathway and narrative performance in TD children. In the autism group, associations were only found in the ILF, suggesting that during real world language use, children with HFA rely less on typical pathways and more on alternative ventral pathways that possibly mediate visual elements of language.
Related JoVE Video
Correction of B0-Distortions in Echo-Planar-Imaging-Based Perfusion-Weighted MRI.
J Magn Reson Imaging
PUBLISHED: 04-15-2013
Show Abstract
Hide Abstract
To evaluate and quantify a scheme for correcting susceptibility artifacts in spin-echo echo-planar-imaging-based dynamic susceptibility contrast (DSC) perfusion MRI of high-grade gliomas at 3 Tesla.
Related JoVE Video
Improved detection of common variants associated with schizophrenia and bipolar disorder using pleiotropy-informed conditional false discovery rate.
PLoS Genet.
PUBLISHED: 04-01-2013
Show Abstract
Hide Abstract
Several lines of evidence suggest that genome-wide association studies (GWAS) have the potential to explain more of the "missing heritability" of common complex phenotypes. However, reliable methods to identify a larger proportion of single nucleotide polymorphisms (SNPs) that impact disease risk are currently lacking. Here, we use a genetic pleiotropy-informed conditional false discovery rate (FDR) method on GWAS summary statistics data to identify new loci associated with schizophrenia (SCZ) and bipolar disorders (BD), two highly heritable disorders with significant missing heritability. Epidemiological and clinical evidence suggest similar disease characteristics and overlapping genes between SCZ and BD. Here, we computed conditional Q-Q curves of data from the Psychiatric Genome Consortium (SCZ; n = 9,379 cases and n = 7,736 controls; BD: n = 6,990 cases and n = 4,820 controls) to show enrichment of SNPs associated with SCZ as a function of association with BD and vice versa with a corresponding reduction in FDR. Applying the conditional FDR method, we identified 58 loci associated with SCZ and 35 loci associated with BD below the conditional FDR level of 0.05. Of these, 14 loci were associated with both SCZ and BD (conjunction FDR). Together, these findings show the feasibility of genetic pleiotropy-informed methods to improve gene discovery in SCZ and BD and indicate overlapping genetic mechanisms between these two disorders.
Related JoVE Video
All SNPs are not created equal: genome-wide association studies reveal a consistent pattern of enrichment among functionally annotated SNPs.
PLoS Genet.
PUBLISHED: 04-01-2013
Show Abstract
Hide Abstract
Recent results indicate that genome-wide association studies (GWAS) have the potential to explain much of the heritability of common complex phenotypes, but methods are lacking to reliably identify the remaining associated single nucleotide polymorphisms (SNPs). We applied stratified False Discovery Rate (sFDR) methods to leverage genic enrichment in GWAS summary statistics data to uncover new loci likely to replicate in independent samples. Specifically, we use linkage disequilibrium-weighted annotations for each SNP in combination with nominal p-values to estimate the True Discovery Rate (TDR = 1-FDR) for strata determined by different genic categories. We show a consistent pattern of enrichment of polygenic effects in specific annotation categories across diverse phenotypes, with the greatest enrichment for SNPs tagging regulatory and coding genic elements, little enrichment in introns, and negative enrichment for intergenic SNPs. Stratified enrichment directly leads to increased TDR for a given p-value, mirrored by increased replication rates in independent samples. We show this in independent Crohns disease GWAS, where we find a hundredfold variation in replication rate across genic categories. Applying a well-established sFDR methodology we demonstrate the utility of stratification for improving power of GWAS in complex phenotypes, with increased rejection rates from 20% in height to 300% in schizophrenia with traditional FDR and sFDR both fixed at 0.05. Our analyses demonstrate an inherent stratification among GWAS SNPs with important conceptual implications that can be leveraged by statistical methods to improve the discovery of loci.
Related JoVE Video
Dense genotyping of immune-related disease regions identifies nine new risk loci for primary sclerosing cholangitis.
Nat. Genet.
PUBLISHED: 03-29-2013
Show Abstract
Hide Abstract
Primary sclerosing cholangitis (PSC) is a severe liver disease of unknown etiology leading to fibrotic destruction of the bile ducts and ultimately to the need for liver transplantation. We compared 3,789 PSC cases of European ancestry to 25,079 population controls across 130,422 SNPs genotyped using the Immunochip. We identified 12 genome-wide significant associations outside the human leukocyte antigen (HLA) complex, 9 of which were new, increasing the number of known PSC risk loci to 16. Despite comorbidity with inflammatory bowel disease (IBD) in 72% of the cases, 6 of the 12 loci showed significantly stronger association with PSC than with IBD, suggesting overlapping yet distinct genetic architectures for these two diseases. We incorporated association statistics from 7 diseases clinically occurring with PSC in the analysis and found suggestive evidence for 33 additional pleiotropic PSC risk loci. Together with network analyses, these findings add to the genetic risk map of PSC and expand on the relationship between PSC and other immune-mediated diseases.
Related JoVE Video
Cortical surface area and IQ in very-low-birth-weight (VLBW) young adults.
Cortex
PUBLISHED: 03-26-2013
Show Abstract
Hide Abstract
Quantitative MRI measurements have revealed abnormalities in cortical development in children born preterm with very-low-birth-weight (VLBW). These children also have increased risk of cognitive deficits that persist into adulthood. The aim of this study was to investigate cortical surface area in VLBW young adults at age 19 compared with controls and to see whether surface area change was associated with cognitive function in the VLBW group.
Related JoVE Video
Critical ages in the life course of the adult brain: nonlinear subcortical aging.
Neurobiol. Aging
PUBLISHED: 03-18-2013
Show Abstract
Hide Abstract
Age-related changes in brain structure result from a complex interplay among various neurobiological processes, which may contribute to more complex trajectories than what can be described by simple linear or quadratic models. We used a nonparametric smoothing spline approach to delineate cross-sectionally estimated age trajectories of the volume of 17 neuroanatomic structures in 1100 healthy adults (18-94 years). Accelerated estimated decline in advanced age characterized some structures, for example hippocampus, but was not the norm. For most areas, 1 or 2 critical ages were identified, characterized by changes in the estimated rate of change. One-year follow-up data from 142 healthy older adults (60-91 years) confirmed the existence of estimated change from the cross-sectional analyses for all areas except 1 (caudate). The cross-sectional and the longitudinal analyses agreed well on the rank order of age effects on specific brain structures (Spearman ? = 0.91). The main conclusions are that most brain structures do not follow a simple path throughout adult life and that accelerated decline in high age is not the norm of healthy brain aging.
Related JoVE Video
Genetics of brain structure: contributions from the Vietnam Era Twin Study of Aging.
Am. J. Med. Genet. B Neuropsychiatr. Genet.
PUBLISHED: 03-15-2013
Show Abstract
Hide Abstract
Understanding the genetics of neuropsychiatric disorders requires an understanding of the genetics of brain structure and function. The Vietnam Era Twin Study of Aging (VETSA) is a longitudinal behavioral genetic study focused on cognitive and brain aging. Here, we describe basic science work carried out within the VETSA MRI study that provides meaningful contributions toward the study of neuropsychiatric disorders. VETSA produced the first comprehensive assessment of the heritability of cortical and subcortical brain structure sizes, all within the same individuals. We showed that neocortical thickness and surface area are largely genetically distinct. With continuous neocortical thickness maps, we demonstrated regional specificity of genetic influences, and that genetic factors did not conform to traditional regions of interest (ROIs). However, there was some evidence for different genetic factors accounting for different types of cortex, and for genetic relationships across cortical regions corresponding to anatomical and functional connectivity and brain maturation patterns. With continuous neocortical surface area maps, we confirmed the anterior-posterior gradient of genetic influences on cortical area patterning demonstrated in animal models. Finally, we used twin methods to create the first map of cortical ROIs based entirely on genetically informative data. We conclude that these genetically based cortical phenotypes may be more appropriate for genetic studies than traditional ROIs based on structure or function. Our results also suggest that cortical volume-the product of thickness and surface area-is a problematic phenotype for genetic studies because two independent sets of genes may be obscured. Examples supporting the validity of these conclusions are provided.
Related JoVE Video
Age-related Changes in Tissue Signal Properties Within Cortical Areas Important for Word Understanding in 12- to 19-Month-Old Infants.
Cereb. Cortex
PUBLISHED: 02-28-2013
Show Abstract
Hide Abstract
Recently, our laboratory has shown that the neural mechanisms for encoding lexico-semantic information in adults operate functionally by 12-18 months of age within left frontotemporal cortices (Travis et al., 2011. Spatiotemporal neural dynamics of word understanding in 12- to 18-month-old-infants. Cereb Cortex. 8:1832-1839). However, there is minimal knowledge of the structural changes that occur within these and other cortical regions important for language development. To identify regional structural changes taking place during this important period in infant development, we examined age-related changes in tissue signal properties of gray matter (GM) and white matter (WM) intensity and contrast. T1-weighted surface-based measures were acquired from 12- to 19-month-old infants and analyzed using a general linear model. Significant age effects were observed for GM and WM intensity and contrast within bilateral inferior lateral and anterovental temporal regions, dorsomedial frontal, and superior parietal cortices. Region of interest (ROI) analyses revealed that GM and WM intensity and contrast significantly increased with age within the same left lateral temporal regions shown to generate lexico-semantic activity in infants and adults. These findings suggest that neurophysiological processes supporting linguistic and cognitive behaviors may develop before cellular and structural maturation is complete within associative cortices. These results have important implications for understanding the neurobiological mechanisms relating structural to functional brain development.
Related JoVE Video
Cognitive reserve moderates the association between hippocampal volume and episodic memory in middle age.
Neuropsychologia
PUBLISHED: 02-26-2013
Show Abstract
Hide Abstract
Cognitive reserve is hypothesized to help people withstand greater brain pathology without manifesting clinical symptoms, and may be regarded as a preventive factor of dementia. It is unclear whether the effect of cognitive reserve is evident only among the older adults or after conversion to dementia, or if it can also be seen earlier in life before the prominent effects of cognitive aging become apparent. While finding a main effect of cognitive reserve on cognitive outcome may be consistent with the reserve hypothesis, in our view, it is unnecessary to invoke the idea of reserve if only a main effect is present. Rather, it is the interaction between a measure of reserve and a brain measure on cognitive outcome that is key for confirming that the effects of brain pathology affect people differently according to their cognitive reserve. We studied whether general cognitive ability at an average age of 20 years, as a direct measure of cognitive reserve, moderates the association between hippocampal volume and episodic memory performance in 494 middle-aged men ages 51 to 60. Whereas there was no statistically significant direct relationship between hippocampal volume and episodic memory performance in middle age, we found a statistically significant interaction such that there was a positive association between hippocampal volume and episodic memory only among people with lower general cognitive ability at age 20, i.e., lower levels of cognitive reserve. Our results provide support for the hypothesis that cognitive reserve moderates the relationship between brain structure and cognition in middle age, well before the onset of dementia.
Related JoVE Video
Normal Birth Weight Variation Is Related to Cortical Morphology Across the Psychosis Spectrum.
Schizophr Bull
PUBLISHED: 02-18-2013
Show Abstract
Hide Abstract
Background:Normal birth weight variation affects schizophrenia risk and cognitive performance in schizophrenia patients and healthy controls. Brain cortical anatomy is altered in psychotic disorders and in low birth weight subjects, but if birth weight variation relates to cortical morphology across the psychosis spectrum is not known.Methods:Magnetic Resonance Imaging brain scans and clinical-, neurocognitive-, and medical birth registry data were collected from 359 adults including patients with a DSM-IV diagnosis of schizophrenia (n = 90, mean age 29.4±10.2 [95% CI], 62% male), bipolar disorder (n = 79, age 29.4±11.8, 39% male) or other psychosis (n = 40, age 26.3±10.0, 56% male), and healthy controls (n = 140, age 30.8±12.0,53% male). We explored the relationship between whole-range birth weight variation and cortical surface area and thickness and their possible associations to cognitive performance.Results:Across all groups, lower birth weight was associated with smaller total surface area (t = 3.87, P = .0001), within specific regions of the temporal, parietal, and frontal cortex bilaterally. There were no associations between birth weight and cortical thickness, and no diagnosis by birth weight interaction effects on cortical thickness or surface area. Smaller cortical area (t = 2.50, P = .013) and lower birth weight (t = 2.53, P = .012) were significantly related to poorer working memory performance in all diagnostic groups except schizophrenia.Conclusion:Birth weight relates to adult cortical surface area, but not cortical thickness, in patients across the psychosis spectrum and in healthy controls. Cortical area appears to be a diagnosis-independent general marker of early neurodevelopment, with a dose-response association to normal birth weight variation.
Related JoVE Video
ZNF804A and cortical thickness in schizophrenia and bipolar disorder.
Psychiatry Res
PUBLISHED: 01-17-2013
Show Abstract
Hide Abstract
ZNF804A SNP rs1344706 confers genome-wide risk for schizophrenia and bipolar disorder. Both disorders affect cortical thickness. To determine if single nucleotide polymorphisms (SNPs) across ZNF804A are associated with cortical thinning, we investigated 63 SNPs (including rs1344706) in 365 psychosis patients and healthy controls. Results show no significant associations.
Related JoVE Video
Improved detection of common variants associated with schizophrenia by leveraging pleiotropy with cardiovascular-disease risk factors.
Am. J. Hum. Genet.
PUBLISHED: 01-07-2013
Show Abstract
Hide Abstract
Several lines of evidence suggest that genome-wide association studies (GWASs) have the potential to explain more of the "missing heritability" of common complex phenotypes. However, reliable methods for identifying a larger proportion of SNPs are currently lacking. Here, we present a genetic-pleiotropy-informed method for improving gene discovery with the use of GWAS summary-statistics data. We applied this methodology to identify additional loci associated with schizophrenia (SCZ), a highly heritable disorder with significant missing heritability. Epidemiological and clinical studies suggest comorbidity between SCZ and cardiovascular-disease (CVD) risk factors, including systolic blood pressure, triglycerides, low- and high-density lipoprotein, body mass index, waist-to-hip ratio, and type 2 diabetes. Using stratified quantile-quantile plots, we show enrichment of SNPs associated with SCZ as a function of the association with several CVD risk factors and a corresponding reduction in false discovery rate (FDR). We validate this "pleiotropic enrichment" by demonstrating increased replication rate across independent SCZ substudies. Applying the stratified FDR method, we identified 25 loci associated with SCZ at a conditional FDR level of 0.01. Of these, ten loci are associated with both SCZ and CVD risk factors, mainly triglycerides and low- and high-density lipoproteins but also waist-to-hip ratio, systolic blood pressure, and body mass index. Together, these findings suggest the feasibility of using genetic-pleiotropy-informed methods for improving gene discovery in SCZ and identifying potential mechanistic relationships with various CVD risk factors.
Related JoVE Video
Restriction-Spectrum Imaging of Bevacizumab-Related Necrosis in a Patient with GBM.
Front Oncol
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Importance: With the increasing use of antiangiogenic agents in the treatment of high-grade gliomas, we are becoming increasingly aware of distinctive imaging findings seen in a subset of patients treated with these agents. Of particular interest is the development of regions of marked and persistent restricted diffusion. We describe a case with histopathologic validation, confirming that this region of restricted diffusion represents necrosis and not viable tumor. Observations: We present a case report of a 52-year-old man with GBM treated with temozolomide, radiation, and concurrent bevacizumab following gross total resection. The patient underwent sequential MRIs which included restriction-spectrum imaging (RSI), an advanced diffusion-weighted imaging (DWI) technique, and MR perfusion. Following surgery, the patient developed an area of restricted diffusion on RSI which became larger and more confluent over the next several months. Marked signal intensity on RSI and very low cerebral blood volume (CBV) on MR perfusion led us to favor bevacizumab-related necrosis over recurrent tumor. Subsequent histopathologic evaluation confirmed coagulative necrosis. Conclusion and Relevance: Our report increases the number of pathologically proven cases of bevacizumab-related necrosis in the literature from three to four. Furthermore, our case demonstrates this phenomenon on RSI, which has been shown to have good sensitivity to restricted diffusion.
Related JoVE Video
Comparison of three methods for localizing interictal epileptiform discharges with magnetoencephalography.
J Clin Neurophysiol
PUBLISHED: 09-28-2011
Show Abstract
Hide Abstract
To compare three methods of localizing the source of epileptiform activity recorded with magnetoencephalography: equivalent current dipole, minimum current estimate, and dynamic statistical parametric mapping (dSPM), and to evaluate the solutions by comparison with clinical symptoms and other electrophysiological and neuroradiological findings.
Related JoVE Video
"Overshoot" of O? is required to maintain baseline tissue oxygenation at locations distal to blood vessels.
J. Neurosci.
PUBLISHED: 09-24-2011
Show Abstract
Hide Abstract
In vivo imaging of cerebral tissue oxygenation is important in defining healthy physiology and pathological departures associated with cerebral disease. We used a recently developed two-photon microscopy method, based on a novel phosphorescent nanoprobe, to image tissue oxygenation in the rat primary sensory cortex in response to sensory stimulation. Our measurements showed that a stimulus-evoked increase in tissue pO? depended on the baseline pO? level. In particular, during sustained stimulation, the steady-state pO? at low-baseline locations remained at the baseline, despite large pO? increases elsewhere. In contrast to the steady state, where pO? never decreased below the baseline, transient decreases occurred during the "initial dip" and "poststimulus undershoot." These results suggest that the increase in blood oxygenation during the hemodynamic response, which has been perceived as a paradox, may serve to prevent a sustained oxygenation drop at tissue locations that are remote from the vascular feeding sources.
Related JoVE Video
Genetic influences on cortical regionalization in the human brain.
Neuron
PUBLISHED: 08-23-2011
Show Abstract
Hide Abstract
Animal data demonstrate that the development of distinct cortical areas is influenced by genes that exhibit highly regionalized expression patterns. In this paper, we show genetic patterning of cortical surface area derived from MRI data from 406 adult human twins. We mapped genetic correlations of areal expansion between selected seed regions and all other cortical locations, with the selection of seed points based on results from animal studies. "Marching seeds" and a data-driven, hypothesis-free, fuzzy-clustering approach provided convergent validation. The results reveal strong anterior-to-posterior graded, bilaterally symmetric patterns of regionalization, largely consistent with patterns previously reported in nonhuman mammalian models. Broad similarities in genetic patterning between rodents and humans might suggest a conservation of cortical patterning mechanisms, whereas dissimilarities might reflect the functionalities most essential to each species.
Related JoVE Video
Association of genetic variants on 15q12 with cortical thickness and cognition in schizophrenia.
Arch. Gen. Psychiatry
PUBLISHED: 08-04-2011
Show Abstract
Hide Abstract
Cortical thickness is a highly heritable structural brain measurement, and reduced thickness has been associated with schizophrenia, bipolar disorder, and decreased cognitive performance among healthy control individuals. Identifying genes that contribute to variation in cortical thickness provides a means to elucidate some of the biological mechanisms underlying these diseases and general cognitive abilities.
Related JoVE Video
Improved method for retinotopy constrained source estimation of visual-evoked responses.
Hum Brain Mapp
PUBLISHED: 07-14-2011
Show Abstract
Hide Abstract
Retinotopy constrained source estimation (RCSE) is a method for noninvasively measuring the time courses of activation in early visual areas using magnetoencephalography (MEG) or electroencephalography (EEG). Unlike conventional equivalent current dipole or distributed source models, the use of multiple, retinotopically mapped stimulus locations to simultaneously constrain the solutions allows for the estimation of independent waveforms for visual areas V1, V2, and V3, despite their close proximity to each other. We describe modifications that improve the reliability and efficiency of this method. First, we find that increasing the number and size of visual stimuli results in source estimates that are less susceptible to noise. Second, to create a more accurate forward solution, we have explicitly modeled the cortical point spread of individual visual stimuli. Dipoles are represented as extended patches on the cortical surface, which take into account the estimated receptive field size at each location in V1, V2, and V3 as well as the contributions from contralateral, ipsilateral, dorsal, and ventral portions of the visual areas. Third, we implemented a map fitting procedure to deform a template to match individual subject retinotopic maps derived from functional magnetic resonance imaging (fMRI). This improves the efficiency of the overall method by allowing automated dipole selection, and it makes the results less sensitive to physiological noise in fMRI retinotopy data. Finally, the iteratively reweighted least squares (IRLS) method was used to reduce the contribution from stimulus locations with high residual error for robust estimation of visual evoked responses.
Related JoVE Video
On the estimation of population-specific synaptic currents from laminar multielectrode recordings.
Front Neuroinform
PUBLISHED: 06-07-2011
Show Abstract
Hide Abstract
Multielectrode array recordings of extracellular electrical field potentials along the depth axis of the cerebral cortex are gaining popularity as an approach for investigating the activity of cortical neuronal circuits. The low-frequency band of extracellular potential, i.e., the local field potential (LFP), is assumed to reflect synaptic activity and can be used to extract the laminar current source density (CSD) profile. However, physiological interpretation of the CSD profile is uncertain because it does not disambiguate synaptic inputs from passive return currents and does not identify population-specific contributions to the signal. These limitations prevent interpretation of the CSD in terms of synaptic functional connectivity in the columnar microcircuit. Here we present a novel anatomically informed model for decomposing the LFP signal into population-specific contributions and for estimating the corresponding activated synaptic projections. This involves a linear forward model, which predicts the population-specific laminar LFP in response to synaptic inputs applied at different positions along each population and a linear inverse model, which reconstructs laminar profiles of synaptic inputs from laminar LFP data based on the forward model. Assuming spatially smooth synaptic inputs within individual populations, the model decomposes the columnar LFP into population-specific contributions and estimates the corresponding laminar profiles of synaptic input as a function of time. It should be noted that constant synaptic currents at all positions along a neuronal population cannot be reconstructed, as this does not result in a change in extracellular potential. However, constraining the solution using a priori knowledge of the spatial distribution of synaptic connectivity provides the further advantage of estimating the strength of active synaptic projections from the columnar LFP profile thus fully specifying synaptic inputs.
Related JoVE Video
Basal ganglia atrophy in prodromal Huntingtons disease is detectable over one year using automated segmentation.
Mov. Disord.
PUBLISHED: 04-22-2011
Show Abstract
Hide Abstract
Future clinical trials of neuroprotection in prodromal Huntingtons (known as preHD) will require sensitive in vivo imaging biomarkers to track disease progression over the shortest period. Since basal ganglia atrophy is the most prominent structural characteristic of Huntingtons pathology, systematic assessment of longitudinal subcortical atrophy holds great potential for future biomarker development. We studied 36 preHD and 22 age-matched controls using a novel method to quantify regional change from T(1) -weighted structural images acquired 1 year apart. We assessed cross-sectional volume differences and longitudinal volumetric change in 7 subcortical structures-the accumbens, amygdala, caudate, hippocampus, pallidum, putamen, and thalamus. At baseline, accumbens, caudate, pallidum, and putamen volumes were reduced in preHD versus controls (all P < .01). Longitudinally, atrophy was greater in preHD than controls in the caudate, pallidum, and putamen (all P < .01). Each structure showed a large between-group effect size, especially the pallidum where Cohens d was 1.21. Using pallidal atrophy as a biomarker, we estimate that a hypothetical 1-year neuroprotection study would require only 35 preHD per arm to detect a 50% slowing in atrophy and only 138 preHD per arm to detect a 25% slowing in atrophy. The effect sizes calculated for preHD basal ganglia atrophy over 1 year are some of the largest reported to date. Consequently, this translates to strikingly small sample size estimates that will greatly facilitate any future neuroprotection study. This underscores the utility of this automatic image segmentation and longitudinal nonlinear registration method for upcoming studies of preHD and other neurodegenerative disorders.
Related JoVE Video
Amyloid-? associated volume loss occurs only in the presence of phospho-tau.
Ann. Neurol.
PUBLISHED: 04-15-2011
Show Abstract
Hide Abstract
The relationship between neurodegeneration and the 2 hallmark proteins of Alzheimers disease, amyloid-? (A?) and tau, is still unclear. Here, we examined 286 nondemented participants (107 cognitively normal older adults and 179 memory impaired individuals) who underwent longitudinal magnetic resonance (MR) imaging and lumbar puncture. Using mixed effects models, we investigated the relationship between longitudinal entorhinal cortex atrophy rate, cerebrospinal fluid (CSF) p-tau(181p) and CSF A?(1-42) . We found a significant relationship between elevated entorhinal cortex atrophy rate and decreased CSF A?(1-42) only with elevated CSF p-tau(181p) . Our findings indicate that A?-associated volume loss occurs only in the presence of phospho-tau in humans at risk for dementia.
Related JoVE Video
Mild cognitive impairment: baseline and longitudinal structural MR imaging measures improve predictive prognosis.
Radiology
PUBLISHED: 04-06-2011
Show Abstract
Hide Abstract
To assess whether single-time-point and longitudinal volumetric magnetic resonance (MR) imaging measures provide predictive prognostic information in patients with amnestic mild cognitive impairment (MCI).
Related JoVE Video
Prospective motion correction improves diagnostic utility of pediatric MRI scans.
Pediatr Radiol
PUBLISHED: 03-29-2011
Show Abstract
Hide Abstract
A new technique for prospectively correcting head motion (called PROMO) during acquisition of high-resolution MRI scans has been developed to reduce motion artifacts. To evaluate the efficacy of PROMO, four T1-weighted image volumes (two with PROMO enabled, two uncorrected) were acquired for each of nine children. A radiologist, blind to whether PROMO was used, rated image quality and artifacts on all sagittal slices of every volume. These ratings were significantly better in scans collected with PROMO relative to those collected without PROMO (Mann-Whitney U test, P < 0.0001). The use of PROMO, especially in motion-prone patients, should improve the accuracy of measurements made for clinical care and research, and potentially reduce the need for sedation in children.
Related JoVE Video
Unbiased comparison of sample size estimates from longitudinal structural measures in ADNI.
Hum Brain Mapp
PUBLISHED: 03-25-2011
Show Abstract
Hide Abstract
Structural changes in neuroanatomical subregions can be measured using serial magnetic resonance imaging scans, and provide powerful biomarkers for detecting and monitoring Alzheimers disease. The Alzheimers Disease Neuroimaging Initiative (ADNI) has made a large database of longitudinal scans available, with one of its primary goals being to explore the utility of structural change measures for assessing treatment effects in clinical trials of putative disease-modifying therapies. Several ADNI-funded research laboratories have calculated such measures from the ADNI database and made their results publicly available. Here, using sample size estimates, we present a comparative analysis of the overall results that come from the application of each laboratorys extensive processing stream to the ADNI database. Obtaining accurate measures of change requires correcting for potential bias due to the measurement methods themselves; and obtaining realistic sample size estimates for treatment response, based on longitudinal imaging measures from natural history studies such as ADNI, requires calibrating measured change in patient cohorts with respect to longitudinal anatomical changes inherent to normal aging. We present results showing that significant longitudinal change is present in healthy control subjects who test negative for amyloid-? pathology. Therefore, sample size estimates as commonly reported from power calculations based on total structural change in patients, rather than change in patients relative to change in healthy controls, are likely to be unrealistically low for treatments targeting amyloid-related pathology. Of all the measures publicly available in ADNI, thinning of the entorhinal cortex quantified with the Quarc methodology provides the most powerful change biomarker.
Related JoVE Video
Genetic and environmental contributions to regional cortical surface area in humans: a magnetic resonance imaging twin study.
Cereb. Cortex
PUBLISHED: 03-04-2011
Show Abstract
Hide Abstract
Cortical surface area measures appear to be functionally relevant and distinct in etiology, development, and behavioral correlates compared with other size characteristics, such as cortical thickness. Little is known about genetic and environmental influences on individual differences in regional surface area in humans. Using a large sample of adult twins, we determined relative contributions of genes and environment on variations in regional cortical surface area as measured by magnetic resonance imaging before and after adjustment for genetic and environmental influences shared with total cortical surface area. We found high heritability for total surface area and, before adjustment, moderate heritability for regional surface areas. Compared with other lobes, heritability was higher for frontal lobe and lower for medial temporal lobe. After adjustment for total surface area, regionally specific genetic influences were substantially reduced, although still significant in most regions. Unlike other lobes, left frontal heritability remained high after adjustment. Thus, global and regionally specific genetic factors both influence cortical surface areas. These findings are broadly consistent with results from animal studies regarding the evolution and development of cortical patterning and may guide future research into specific environmental and genetic determinants of variation among humans in the surface area of particular regions.
Related JoVE Video
Genetic influences on hippocampal volume differ as a function of testosterone level in middle-aged men.
Neuroimage
PUBLISHED: 03-02-2011
Show Abstract
Hide Abstract
The hippocampus expresses a large number of androgen receptors; therefore, in men it is potentially vulnerable to the gradual age-related decline of testosterone levels. In the present study we sought to elucidate the nature of the relationship between testosterone and hippocampal volume in a sample of middle-aged male twins (average age 55.8 years). We found no evidence for a correlation between testosterone level and hippocampal volume, as well as no indication of shared genetic influences. However, a significant moderating effect of testosterone on the genetic and environmental determinants of hippocampal volume was observed. Genetic influences on hippocampal volume increased substantially as a function of increasing testosterone level, while environmental influences either decreased or remained stable. These findings provide evidence for an apparent gene-by-hormone interaction on hippocampal volume. To the best of our knowledge, this is the first study to demonstrate that the heritability of a brain structure in adults may be modified by an endogenous biological factor.
Related JoVE Video
Assessment of pituitary adenoma volumetric change using longitudinal MR image registration.
Neuroradiology
PUBLISHED: 03-01-2011
Show Abstract
Hide Abstract
Change detection is a crucial factor in monitoring of slowly evolving pathologies. The objective of the study was to test a semi-automatic method applied on longitudinal MRI monitoring of volume change in pituitary macroadenomas.
Related JoVE Video
Language proficiency modulates the recruitment of non-classical language areas in bilinguals.
PLoS ONE
PUBLISHED: 03-01-2011
Show Abstract
Hide Abstract
Bilingualism provides a unique opportunity for understanding the relative roles of proficiency and order of acquisition in determining how the brain represents language. In a previous study, we combined magnetoencephalography (MEG) and magnetic resonance imaging (MRI) to examine the spatiotemporal dynamics of word processing in a group of Spanish-English bilinguals who were more proficient in their native language. We found that from the earliest stages of lexical processing, words in the second language evoke greater activity in bilateral posterior visual regions, while activity to the native language is largely confined to classical left hemisphere fronto-temporal areas. In the present study, we sought to examine whether these effects relate to language proficiency or order of language acquisition by testing Spanish-English bilingual subjects who had become dominant in their second language. Additionally, we wanted to determine whether activity in bilateral visual regions was related to the presentation of written words in our previous study, so we presented subjects with both written and auditory words. We found greater activity for the less proficient native language in bilateral posterior visual regions for both the visual and auditory modalities, which started during the earliest word encoding stages and continued through lexico-semantic processing. In classical left fronto-temporal regions, the two languages evoked similar activity. Therefore, it is the lack of proficiency rather than secondary acquisition order that determines the recruitment of non-classical areas for word processing.
Related JoVE Video
Common sequence variants in the major histocompatibility complex region associate with cerebral ventricular size in schizophrenia.
Biol. Psychiatry
PUBLISHED: 02-25-2011
Show Abstract
Hide Abstract
Because of evidence from genetic linkage and genome-wide association studies, as well as suggested involvement of infection, the major histocompatibility complex (MHC) region on chromosome 6p21.3-22.1 has been implicated in the development of schizophrenia.
Related JoVE Video
A geographic cline of skull and brain morphology among individuals of European Ancestry.
Hum. Hered.
PUBLISHED: 02-22-2011
Show Abstract
Hide Abstract
Human skull and brain morphology are strongly influenced by genetic factors, and skull size and shape vary worldwide. However, the relationship between specific brain morphology and genetically-determined ancestry is largely unknown.
Related JoVE Video
Entorhinal cortical thinning affects perceptual and cognitive functions in adolescents born preterm with very low birth weight (VLBW).
Early Hum. Dev.
PUBLISHED: 02-09-2011
Show Abstract
Hide Abstract
The entorhinal cortex serves as an important gateway between the cerebral cortex and the hippocampus by receiving afferent information from limbic, modality sensory-specific, and multimodal association fibers from all the brain lobes.
Related JoVE Video
Nonlinear registration of longitudinal images and measurement of change in regions of interest.
Med Image Anal
PUBLISHED: 02-08-2011
Show Abstract
Hide Abstract
We describe here a method, Quarc, for accurately quantifying structural changes in organs, based on serial MRI scans. The procedure can be used to measure deformations globally or in regions of interest (ROIs), including large-scale changes in the whole organ, and subtle changes in small-scale structures. We validate the method with model studies, and provide an illustrative analysis using the brain. We apply the method to the large, publicly available ADNI database of serial brain scans, and calculate Cohens d effect sizes for several ROIs. Using publicly available derived-data, we directly compare effect sizes from Quarc with those from four existing methods that quantify cerebral structural change. Quarc produced a slightly improved, though not significantly different, whole brain effect size compared with the standard KN-BSI method, but in all other cases it produced significantly larger effect sizes.
Related JoVE Video
Monte Carlo simulation of the spatial resolution and depth sensitivity of two-dimensional optical imaging of the brain.
J Biomed Opt
PUBLISHED: 02-02-2011
Show Abstract
Hide Abstract
Absorption or fluorescence-based two-dimensional (2-D) optical imaging is widely employed in functional brain imaging. The image is a weighted sum of the real signal from the tissue at different depths. This weighting function is defined as "depth sensitivity." Characterizing depth sensitivity and spatial resolution is important to better interpret the functional imaging data. However, due to light scattering and absorption in biological tissues, our knowledge of these is incomplete. We use Monte Carlo simulations to carry out a systematic study of spatial resolution and depth sensitivity for 2-D optical imaging methods with configurations typically encountered in functional brain imaging. We found the following: (i) the spatial resolution is <200 ?m for NA?0.2 or focal plane depth?300 ?m. (ii) More than 97% of the signal comes from the top 500 ?m of the tissue. (iii) For activated columns with lateral size larger than spatial resolution, changing numerical aperature (NA) and focal plane depth does not affect depth sensitivity. (iv) For either smaller columns or large columns covered by surface vessels, increasing NA and/or focal plane depth may improve depth sensitivity at deeper layers. Our results provide valuable guidance for the optimization of optical imaging systems and data interpretation.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.