JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Aspergillus flavus infection induces transcriptional and physical changes in developing maize kernels.
Front Microbiol
PUBLISHED: 07-31-2014
Show Abstract
Hide Abstract
Maize kernels are susceptible to infection by the opportunistic pathogen Aspergillus flavus. Infection results in reduction of grain quality and contamination of kernels with the highly carcinogenic mycotoxin, aflatoxin. To understanding host response to infection by the fungus, transcription of approximately 9000 maize genes were monitored during the host-pathogen interaction with a custom designed Affymetrix GeneChip® DNA array. More than 4000 maize genes were found differentially expressed at a FDR of 0.05. This included the up regulation of defense related genes and signaling pathways. Transcriptional changes also were observed in primary metabolism genes. Starch biosynthetic genes were down regulated during infection, while genes encoding maize hydrolytic enzymes, presumably involved in the degradation of host reserves, were up regulated. These data indicate that infection of the maize kernel by A. flavus induced metabolic changes in the kernel, including the production of a defense response, as well as a disruption in kernel development.
Related JoVE Video
Localization, morphology and transcriptional profile of Aspergillus flavus during seed colonization.
Mol. Plant Pathol.
PUBLISHED: 07-08-2013
Show Abstract
Hide Abstract
Aspergillus flavus is an opportunistic fungal pathogen that infects maize kernels pre-harvest, creating major human health concerns and causing substantial agricultural losses. Improved control strategies are needed, yet progress is hampered by the limited understanding of the mechanisms of infection. A series of studies were designed to investigate the localization, morphology and transcriptional profile of A.?flavus during internal seed colonization. Results from these studies indicate that A.?flavus is capable of infecting all tissues of the immature kernel by 96?h after infection. Mycelia were observed in and around the point of inoculation in the endosperm and were found growing down to the germ. At the endosperm-germ interface, hyphae appeared to differentiate and form a biofilm-like structure that surrounded the germ. The exact nature of this structure remains unclear, but is discussed. A custom-designed A.?flavus?Affymetrix GeneChip® microarray was used to monitor genome-wide transcription during pathogenicity. A total of 5061 genes were designated as being differentially expressed. Genes encoding secreted enzymes, transcription factors and secondary metabolite gene clusters were up-regulated and considered to be potential effector molecules responsible for disease in the kernel. Information gained from this study will aid in the development of strategies aimed at preventing or slowing down A.?flavus colonization of the maize kernel.
Related JoVE Video
Understanding Molecular Mechanisms of Durable and Non-durable Resistance to Stripe Rust in Wheat Using a Transcriptomics Approach.
Curr. Genomics
PUBLISHED: 01-22-2013
Show Abstract
Hide Abstract
Stripe rust of wheat, caused by Puccinia striiformis f. sp. tritici, continues to cause severe damage worldwide. Durable resistance is necessary for sustainable control of the disease. High-temperature adult-plant (HTAP) resistance, which expresses when the weather becomes warm and plants grow older, has been demonstrated to be durable. We conducted numerous studies to understand the molecular mechanisms of different types of stripe rust resistance using a transcriptomics approach. Through comparing gene expression patterns with race-specific, all-stage resistance controlled by various genes, we found that a greater diversity of genes is involved in HTAP resistance than in all-stage resistance. The genes involved in HTAP resistance are induced more slowly and their expression induction is less dramatic than genes involved in all-stage resistance. The high diversity of genes and less dramatic induction may explain durability and the incomplete expression level of HTAP resistance. Identification of transcripts may be helpful in identifying resistance controlled by different genes and in selecting better combinations of genes to combine for achieving adequate and durable resistance.
Related JoVE Video
Genotypic and phenotypic versatility of Aspergillus flavus during maize exploitation.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Aspergillus flavus is a cosmopolitan fungus able to respond to external stimuli and to shift both its trophic behaviour and the production of secondary metabolites, including that of the carcinogen aflatoxin (AF). To better understand the adaptability of this fungus, we examined genetic and phenotypic responses within the fungus when grown under four conditions that mimic different ecological niches ranging from saprophytic growth to parasitism. Global transcription changes were observed in both primary and secondary metabolism in response to these conditions, particularly in secondary metabolism where transcription of nearly half of the predicted secondary metabolite clusters changed in response to the trophic states of the fungus. The greatest transcriptional change was found between saprophytic and parasitic growth, which resulted in expression changes in over 800 genes in A. flavus. The fungus also responded to growth conditions, putatively by adaptive changes in conidia, resulting in differences in their ability to utilize carbon sources. We also examined tolerance of A. flavus to oxidative stress and found that growth and secondary metabolism were altered in a superoxide dismutase (sod) mutant and an alkyl-hydroperoxide reductase (ahp) mutant of A. flavus. Data presented in this study show a multifaceted response of A. flavus to its environment and suggest that oxidative stress and secondary metabolism are important in the ecology of this fungus, notably in its interaction with host plant and in relation to changes in its lifestyle (i.e. saprobic to pathogenic).
Related JoVE Video
Beyond aflatoxin: four distinct expression patterns and functional roles associated with Aspergillus flavus secondary metabolism gene clusters.
Mol. Plant Pathol.
PUBLISHED: 05-08-2010
Show Abstract
Hide Abstract
Species of Aspergillus produce a diverse array of secondary metabolites, and recent genomic analysis has predicted that these species have the capacity to synthesize many more compounds. It has been possible to infer the presence of 55 gene clusters associated with secondary metabolism in Aspergillus flavus; however, only three metabolic pathways-aflatoxin, cyclopiazonic acid (CPA) and aflatrem-have been assigned to these clusters. To gain an insight into the regulation of and to infer the ecological significance of the 55 secondary metabolite gene clusters predicted in A. flavus, we examined their expression over 28 diverse conditions. Variables included culture medium and temperature, fungal development, colonization of developing maize seeds and misexpression of laeA, a global regulator of secondary metabolism. Hierarchical clustering analysis of expression profiles allowed us to categorize the gene clusters into four distinct clades. Gene clusters for the production of aflatoxins, CPA and seven other unknown compound(s) were identified as belonging to one clade. To further explore the relationships found by gene expression analysis, aflatoxin and CPA production were quantified under five different cell culture environments known to be conducive or nonconducive for aflatoxin biosynthesis and during the colonization of developing maize seeds. Results from these studies showed that secondary metabolism gene clusters have distinctive gene expression profiles. Aflatoxin and CPA were found to have unique regulation, but are sufficiently similar that they would be expected to co-occur in substrates colonized with A. flavus.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.