JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Population and single-cell genomics reveal the Aire dependency, relief from Polycomb silencing, and distribution of self-antigen expression in thymic epithelia.
Genome Res.
PUBLISHED: 09-15-2014
Show Abstract
Hide Abstract
Promiscuous gene expression (PGE) by thymic epithelial cells (TEC) is essential for generating a diverse T cell antigen receptor repertoire tolerant to self-antigens, and thus for avoiding autoimmunity. Nevertheless, the extent and nature of this unusual expression program within TEC populations and single cells are unknown. Using deep transcriptome sequencing of carefully identified mouse TEC subpopulations, we discovered a program of PGE that is common between medullary (m) and cortical TEC, further elaborated in mTEC, and completed in mature mTEC expressing the autoimmune regulator gene (Aire). TEC populations are capable of expressing up to 19,293 protein-coding genes, the highest number of genes known to be expressed in any cell type. Remarkably, in mouse mTEC, Aire expression alone positively regulates 3980 tissue-restricted genes. Notably, the tissue specificities of these genes include known targets of autoimmunity in human AIRE deficiency. Led by the observation that genes induced by Aire expression are generally characterized by a repressive chromatin state in somatic tissues, we found these genes to be strongly associated with H3K27me3 marks in mTEC. Our findings are consistent with AIRE targeting and inducing the promiscuous expression of genes previously epigenetically silenced by Polycomb group proteins. Comparison of the transcriptomes of 174 single mTEC indicates that genes induced by Aire expression are transcribed stochastically at low cell frequency. Furthermore, when present, Aire expression-dependent transcript levels were 16-fold higher, on average, in individual TEC than in the mTEC population.
Related JoVE Video
IRF5:RelA interaction targets inflammatory genes in macrophages.
Cell Rep
PUBLISHED: 08-21-2014
Show Abstract
Hide Abstract
Interferon Regulatory Factor 5 (IRF5) plays a major role in setting up an inflammatory macrophage phenotype, but the molecular basis of its transcriptional activity is not fully understood. In this study, we conduct a comprehensive genome-wide analysis of IRF5 recruitment in macrophages stimulated with bacterial lipopolysaccharide and discover that IRF5 binds to regulatory elements of highly transcribed genes. Analysis of protein:DNA microarrays demonstrates that IRF5 recognizes the canonical IRF-binding (interferon-stimulated response element [ISRE]) motif in vitro. However, IRF5 binding in vivo appears to rely on its interactions with other proteins. IRF5 binds to a noncanonical composite PU.1:ISRE motif, and its recruitment is aided by RelA. Global gene expression analysis in macrophages deficient in IRF5 and RelA highlights the direct role of the RelA:IRF5 cistrome in regulation of a subset of key inflammatory genes. We map the RelA:IRF5 interaction domain and suggest that interfering with it would offer selective targeting of macrophage inflammatory activities.
Related JoVE Video
Long non-coding RNAs and enhancer RNAs regulate the lipopolysaccharide-induced inflammatory response in human monocytes.
Nat Commun
PUBLISHED: 04-29-2014
Show Abstract
Hide Abstract
Early reports indicate that long non-coding RNAs (lncRNAs) are novel regulators of biological responses. However, their role in the human innate immune response, which provides the initial defence against infection, is largely unexplored. To address this issue, here we characterize the long non-coding RNA transcriptome in primary human monocytes using RNA sequencing. We identify 76 enhancer RNAs (eRNAs), 40 canonical lncRNAs, 65 antisense lncRNAs and 35 regions of bidirectional transcription (RBT) that are differentially expressed in response to bacterial lipopolysaccharide (LPS). Crucially, we demonstrate that knockdown of nuclear-localized, NF-?B-regulated, eRNAs (IL1?-eRNA) and RBT (IL1?-RBT46) surrounding the IL1? locus, attenuates LPS-induced messenger RNA transcription and release of the proinflammatory mediators, IL1? and CXCL8. We predict that lncRNAs can be important regulators of the human innate immune response.
Related JoVE Video
Targeting polycomb to pericentric heterochromatin in embryonic stem cells reveals a role for H2AK119u1 in PRC2 recruitment.
Cell Rep
PUBLISHED: 03-12-2014
Show Abstract
Hide Abstract
The mechanisms by which the major Polycomb group (PcG) complexes PRC1 and PRC2 are recruited to target sites in vertebrate cells are not well understood. Building on recent studies that determined a reciprocal relationship between DNA methylation and Polycomb activity, we demonstrate that, in methylation-deficient embryonic stem cells (ESCs), CpG density combined with antagonistic effects of H3K9me3 and H3K36me3 redirects PcG complexes to pericentric heterochromatin and gene-rich domains. Surprisingly, we find that PRC1-linked H2A monoubiquitylation is sufficient to recruit PRC2 to chromatin in vivo, suggesting a mechanism through which recognition of unmethylated CpG determines the localization of both PRC1 and PRC2 at canonical and atypical target sites. We discuss our data in light of emerging evidence suggesting that PcG recruitment is a default state at licensed chromatin sites, mediated by interplay between CpG hypomethylation and counteracting H3 tail modifications.
Related JoVE Video
Sequencing depth and coverage: key considerations in genomic analyses.
Nat. Rev. Genet.
PUBLISHED: 01-18-2014
Show Abstract
Hide Abstract
Sequencing technologies have placed a wide range of genomic analyses within the capabilities of many laboratories. However, sequencing costs often set limits to the amount of sequences that can be generated and, consequently, the biological outcomes that can be achieved from an experimental design. In this Review, we discuss the issue of sequencing depth in the design of next-generation sequencing experiments. We review current guidelines and precedents on the issue of coverage, as well as their underlying considerations, for four major study designs, which include de novo genome sequencing, genome resequencing, transcriptome sequencing and genomic location analyses (for example, chromatin immunoprecipitation followed by sequencing (ChIP-seq) and chromosome conformation capture (3C)).
Related JoVE Video
CGAT: computational genomics analysis toolkit.
Bioinformatics
PUBLISHED: 01-05-2014
Show Abstract
Hide Abstract
Computational genomics seeks to draw biological inferences from genomic datasets, often by integrating and contextualizing next-generation sequencing data. CGAT provides an extensive suite of tools designed to assist in the analysis of genome scale data from a range of standard file formats. The toolkit enables filtering, comparison, conversion, summarization and annotation of genomic intervals, gene sets and sequences. The tools can both be run from the Unix command line and installed into visual workflow builders, such as Galaxy.
Related JoVE Video
Pfam: the protein families database.
Nucleic Acids Res.
PUBLISHED: 11-27-2013
Show Abstract
Hide Abstract
Pfam, available via servers in the UK (http://pfam.sanger.ac.uk/) and the USA (http://pfam.janelia.org/), is a widely used database of protein families, containing 14 831 manually curated entries in the current release, version 27.0. Since the last update article 2 years ago, we have generated 1182 new families and maintained sequence coverage of the UniProt Knowledgebase (UniProtKB) at nearly 80%, despite a 50% increase in the size of the underlying sequence database. Since our 2012 article describing Pfam, we have also undertaken a comprehensive review of the features that are provided by Pfam over and above the basic family data. For each feature, we determined the relevance, computational burden, usage statistics and the functionality of the feature in a website context. As a consequence of this review, we have removed some features, enhanced others and developed new ones to meet the changing demands of computational biology. Here, we describe the changes to Pfam content. Notably, we now provide family alignments based on four different representative proteome sequence data sets and a new interactive DNA search interface. We also discuss the mapping between Pfam and known 3D structures.
Related JoVE Video
GAT: a simulation framework for testing the association of genomic intervals.
Bioinformatics
PUBLISHED: 06-18-2013
Show Abstract
Hide Abstract
A common question in genomic analysis is whether two sets of genomic intervals overlap significantly. This question arises, for example, when interpreting ChIP-Seq or RNA-Seq data in functional terms. Because genome organization is complex, answering this question is non-trivial.
Related JoVE Video
Next-generation Sequencing of Advanced Prostate Cancer Treated with Androgen-deprivation Therapy.
Eur. Urol.
PUBLISHED: 05-27-2013
Show Abstract
Hide Abstract
Androgen-deprivation therapy (ADT) is standard treatment for locally advanced or metastatic prostate cancer (PCa). Many patients develop castration resistance (castration-resistant PCa [CRPC]) after approximately 2-3 yr, with a poor prognosis. The molecular mechanisms underlying CRPC progression are unclear.
Related JoVE Video
Insights into the evolution of Darwins finches from comparative analysis of the Geospiza magnirostris genome sequence.
BMC Genomics
PUBLISHED: 01-23-2013
Show Abstract
Hide Abstract
A classical example of repeated speciation coupled with ecological diversification is the evolution of 14 closely related species of Darwins (Galápagos) finches (Thraupidae, Passeriformes). Their adaptive radiation in the Galápagos archipelago took place in the last 2-3 million years and some of the molecular mechanisms that led to their diversification are now being elucidated. Here we report evolutionary analyses of genome of the large ground finch, Geospiza magnirostris.
Related JoVE Video
Epigenetic conservation at gene regulatory elements revealed by non-methylated DNA profiling in seven vertebrates.
Elife
PUBLISHED: 01-15-2013
Show Abstract
Hide Abstract
Two-thirds of gene promoters in mammals are associated with regions of non-methylated DNA, called CpG islands (CGIs), which counteract the repressive effects of DNA methylation on chromatin. In cold-blooded vertebrates, computational CGI predictions often reside away from gene promoters, suggesting a major divergence in gene promoter architecture across vertebrates. By experimentally identifying non-methylated DNA in the genomes of seven diverse vertebrates, we instead reveal that non-methylated islands (NMIs) of DNA are a central feature of vertebrate gene promoters. Furthermore, NMIs are present at orthologous genes across vast evolutionary distances, revealing a surprising level of conservation in this epigenetic feature. By profiling NMIs in different tissues and developmental stages we uncover a unifying set of features that are central to the function of NMIs in vertebrates. Together these findings demonstrate an ancient logic for NMI usage at gene promoters and reveal an unprecedented level of epigenetic conservation across vertebrate evolution. DOI:http://dx.doi.org/10.7554/eLife.00348.001.
Related JoVE Video
The Pfam protein families database.
Nucleic Acids Res.
PUBLISHED: 11-29-2011
Show Abstract
Hide Abstract
Pfam is a widely used database of protein families, currently containing more than 13,000 manually curated protein families as of release 26.0. Pfam is available via servers in the UK (http://pfam.sanger.ac.uk/), the USA (http://pfam.janelia.org/) and Sweden (http://pfam.sbc.su.se/). Here, we report on changes that have occurred since our 2010 NAR paper (release 24.0). Over the last 2 years, we have generated 1840 new families and increased coverage of the UniProt Knowledgebase (UniProtKB) to nearly 80%. Notably, we have taken the step of opening up the annotation of our families to the Wikipedia community, by linking Pfam families to relevant Wikipedia pages and encouraging the Pfam and Wikipedia communities to improve and expand those pages. We continue to improve the Pfam website and add new visualizations, such as the sunburst representation of taxonomic distribution of families. In this work we additionally address two topics that will be of particular interest to the Pfam community. First, we explain the definition and use of family-specific, manually curated gathering thresholds. Second, we discuss some of the features of domains of unknown function (also known as DUFs), which constitute a rapidly growing class of families within Pfam.
Related JoVE Video
Transcriptomic analysis supports similar functional roles for the two thymuses of the tammar wallaby.
BMC Genomics
PUBLISHED: 08-19-2011
Show Abstract
Hide Abstract
The thymus plays a critical role in the development and maturation of T-cells. Humans have a single thoracic thymus and presence of a second thymus is considered an anomaly. However, many vertebrates have multiple thymuses. The tammar wallaby has two thymuses: a thoracic thymus (typically found in all mammals) and a dominant cervical thymus. Researchers have known about the presence of the two wallaby thymuses since the 1800s, but no genome-wide research has been carried out into possible functional differences between the two thymic tissues. Here, we used pyrosequencing to compare the transcriptomes of a cervical and thoracic thymus from a single 178 day old tammar wallaby.
Related JoVE Video
Mouse genomic variation and its effect on phenotypes and gene regulation.
Nature
PUBLISHED: 07-05-2011
Show Abstract
Hide Abstract
We report genome sequences of 17 inbred strains of laboratory mice and identify almost ten times more variants than previously known. We use these genomes to explore the phylogenetic history of the laboratory mouse and to examine the functional consequences of allele-specific variation on transcript abundance, revealing that at least 12% of transcripts show a significant tissue-specific expression bias. By identifying candidate functional variants at 718 quantitative trait loci we show that the molecular nature of functional variants and their position relative to genes vary according to the effect size of the locus. These sequences provide a starting point for a new era in the functional analysis of a key model organism.
Related JoVE Video
The genome of the green anole lizard and a comparative analysis with birds and mammals.
Nature
PUBLISHED: 04-21-2011
Show Abstract
Hide Abstract
The evolution of the amniotic egg was one of the great evolutionary innovations in the history of life, freeing vertebrates from an obligatory connection to water and thus permitting the conquest of terrestrial environments. Among amniotes, genome sequences are available for mammals and birds, but not for non-avian reptiles. Here we report the genome sequence of the North American green anole lizard, Anolis carolinensis. We find that A. carolinensis microchromosomes are highly syntenic with chicken microchromosomes, yet do not exhibit the high GC and low repeat content that are characteristic of avian microchromosomes. Also, A. carolinensis mobile elements are very young and diverse-more so than in any other sequenced amniote genome. The GC content of this lizard genome is also unusual in its homogeneity, unlike the regionally variable GC content found in mammals and birds. We describe and assign sequence to the previously unknown A. carolinensis X chromosome. Comparative gene analysis shows that amniote egg proteins have evolved significantly more rapidly than other proteins. An anole phylogeny resolves basal branches to illuminate the history of their repeated adaptive radiations.
Related JoVE Video
Comparative and demographic analysis of orang-utan genomes.
Devin P Locke, LaDeana W Hillier, Wesley C Warren, Kim C Worley, Lynne V Nazareth, Donna M Muzny, Shiaw-Pyng Yang, Zhengyuan Wang, Asif T Chinwalla, Pat Minx, Makedonka Mitreva, Lisa Cook, Kim D Delehaunty, Catrina Fronick, Heather Schmidt, Lucinda A Fulton, Robert S Fulton, Joanne O Nelson, Vincent Magrini, Craig Pohl, Tina A Graves, Chris Markovic, Andy Cree, Huyen H Dinh, Jennifer Hume, Christie L Kovar, Gerald R Fowler, Gerton Lunter, Stephen Meader, Andreas Heger, Chris P Ponting, Tomas Marques-Bonet, Can Alkan, Lin Chen, Ze Cheng, Jeffrey M Kidd, Evan E Eichler, Simon White, Stephen Searle, Albert J Vilella, Yuan Chen, Paul Flicek, Jian Ma, Brian Raney, Bernard Suh, Richard Burhans, Javier Herrero, David Haussler, Rui Faria, Olga Fernando, Fleur Darré, Domènec Farré, Elodie Gazave, Meritxell Oliva, Arcadi Navarro, Roberta Roberto, Oronzo Capozzi, Nicoletta Archidiacono, Giuliano Della Valle, Stefania Purgato, Mariano Rocchi, Miriam K Konkel, Jerilyn A Walker, Brygg Ullmer, Mark A Batzer, Arian F A Smit, Robert Hubley, Claudio Casola, Daniel R Schrider, Matthew W Hahn, Víctor Quesada, Xose S Puente, Gonzalo R Ordoñez, Carlos Lopez-Otin, Tomás Vinar, Brona Brejova, Aakrosh Ratan, Robert S Harris, Webb Miller, Carolin Kosiol, Heather A Lawson, Vikas Taliwal, André L Martins, Adam Siepel, Arindam RoyChoudhury, Xin Ma, Jeremiah Degenhardt, Carlos D Bustamante, Ryan N Gutenkunst, Thomas Mailund, Julien Y Dutheil, Asger Hobolth, Mikkel H Schierup, Oliver A Ryder, Yuko Yoshinaga, Pieter J de Jong, George M Weinstock, Jeffrey Rogers, Elaine R Mardis, Richard A Gibbs, Richard K Wilson.
Nature
PUBLISHED: 01-29-2011
Show Abstract
Hide Abstract
Orang-utan is derived from a Malay term meaning man of the forest and aptly describes the southeast Asian great apes native to Sumatra and Borneo. The orang-utan species, Pongo abelii (Sumatran) and Pongo pygmaeus (Bornean), are the most phylogenetically distant great apes from humans, thereby providing an informative perspective on hominid evolution. Here we present a Sumatran orang-utan draft genome assembly and short read sequence data from five Sumatran and five Bornean orang-utan genomes. Our analyses reveal that, compared to other primates, the orang-utan genome has many unique features. Structural evolution of the orang-utan genome has proceeded much more slowly than other great apes, evidenced by fewer rearrangements, less segmental duplication, a lower rate of gene family turnover and surprisingly quiescent Alu repeats, which have played a major role in restructuring other primate genomes. We also describe a primate polymorphic neocentromere, found in both Pongo species, emphasizing the gradual evolution of orang-utan genome structure. Orang-utans have extremely low energy usage for a eutherian mammal, far lower than their hominid relatives. Adding their genome to the repertoire of sequenced primates illuminates new signals of positive selection in several pathways including glycolipid metabolism. From the population perspective, both Pongo species are deeply diverse; however, Sumatran individuals possess greater diversity than their Bornean counterparts, and more species-specific variation. Our estimate of Bornean/Sumatran speciation time, 400,000?years ago, is more recent than most previous studies and underscores the complexity of the orang-utan speciation process. Despite a smaller modern census population size, the Sumatran effective population size (N(e)) expanded exponentially relative to the ancestral N(e) after the split, while Bornean N(e) declined over the same period. Overall, the resources and analyses presented here offer new opportunities in evolutionary genomics, insights into hominid biology, and an extensive database of variation for conservation efforts.
Related JoVE Video
A ChIP-seq defined genome-wide map of vitamin D receptor binding: associations with disease and evolution.
Genome Res.
PUBLISHED: 08-24-2010
Show Abstract
Hide Abstract
Initially thought to play a restricted role in calcium homeostasis, the pleiotropic actions of vitamin D in biology and their clinical significance are only now becoming apparent. However, the mode of action of vitamin D, through its cognate nuclear vitamin D receptor (VDR), and its contribution to diverse disorders, remain poorly understood. We determined VDR binding throughout the human genome using chromatin immunoprecipitation followed by massively parallel DNA sequencing (ChIP-seq). After calcitriol stimulation, we identified 2776 genomic positions occupied by the VDR and 229 genes with significant changes in expression in response to vitamin D. VDR binding sites were significantly enriched near autoimmune and cancer associated genes identified from genome-wide association (GWA) studies. Notable genes with VDR binding included IRF8, associated with MS, and PTPN2 associated with Crohns disease and T1D. Furthermore, a number of single nucleotide polymorphism associations from GWA were located directly within VDR binding intervals, for example, rs13385731 associated with SLE and rs947474 associated with T1D. We also observed significant enrichment of VDR intervals within regions of positive selection among individuals of Asian and European descent. ChIP-seq determination of transcription factor binding, in combination with GWA data, provides a powerful approach to further understanding the molecular bases of complex diseases.
Related JoVE Video
Molecular evolution of genes in avian genomes.
Genome Biol.
PUBLISHED: 04-30-2010
Show Abstract
Hide Abstract
Obtaining a draft genome sequence of the zebra finch (Taeniopygia guttata), the second bird genome to be sequenced, provides the necessary resource for whole-genome comparative analysis of gene sequence evolution in a non-mammalian vertebrate lineage. To analyze basic molecular evolutionary processes during avian evolution, and to contrast these with the situation in mammals, we aligned the protein-coding sequences of 8,384 1:1 orthologs of chicken, zebra finch, a lizard and three mammalian species.
Related JoVE Video
Accelerated evolution of PAK3- and PIM1-like kinase gene families in the zebra finch, Taeniopygia guttata.
Mol. Biol. Evol.
PUBLISHED: 03-17-2010
Show Abstract
Hide Abstract
Genes encoding protein kinases tend to evolve slowly over evolutionary time, and only rarely do they appear as recent duplications in sequenced vertebrate genomes. Consequently, it was a surprise to find two families of kinase genes that have greatly and recently expanded in the zebra finch (Taeniopygia guttata) lineage. In contrast to other amniotic genomes (including chicken) that harbor only single copies of p21-activated serine/threonine kinase 3 (PAK3) and proviral integration site 1 (PIM1) genes, the zebra finch genome appeared at first to additionally contain 67 PAK3-like (PAK3L) and 51 PIM1-like (PIM1L) protein kinase genes. An exhaustive analysis of these gene models, however, revealed most to be incomplete, owing to the absence of terminal exons. After reprediction, 31 PAK3L genes and 10 PIM1L genes remain, and all but three are predicted, from the retention of functional sites and open reading frames, to be enzymatically active. PAK3L, but not PIM1L, gene sequences show evidence of recurrent episodes of positive selection, concentrated within structures spatially adjacent to N- and C-terminal protein regions that have been discarded from zebra finch PAK3L genes. At least seven zebra finch PAK3L genes were observed to be expressed in testis, whereas two sequences were found transcribed in the brain, one broadly including the song nuclei and the other in the ventricular zone and in cells resembling Bergmanns glia in the cerebellar Purkinje cell layer. Two PIM1L sequences were also observed to be expressed with broad distributions in the zebra finch brain, one in both the ventricular zone and the cerebellum and apparently associated with glial cells and the other showing neuronal cell expression and marked enrichment in midbrain/thalamic nuclei. These expression patterns do not correlate with zebra finch-specific features such as vocal learning. Nevertheless, our results show how ancient and conserved intracellular signaling molecules can be co-opted, following duplication, thereby resulting in lineage-specific functions, presumably affecting the zebra finch testis and brain.
Related JoVE Video
The genome of a songbird.
Nature
PUBLISHED: 01-06-2010
Show Abstract
Hide Abstract
The zebra finch is an important model organism in several fields with unique relevance to human neuroscience. Like other songbirds, the zebra finch communicates through learned vocalizations, an ability otherwise documented only in humans and a few other animals and lacking in the chicken-the only bird with a sequenced genome until now. Here we present a structural, functional and comparative analysis of the genome sequence of the zebra finch (Taeniopygia guttata), which is a songbird belonging to the large avian order Passeriformes. We find that the overall structures of the genomes are similar in zebra finch and chicken, but they differ in many intrachromosomal rearrangements, lineage-specific gene family expansions, the number of long-terminal-repeat-based retrotransposons, and mechanisms of sex chromosome dosage compensation. We show that song behaviour engages gene regulatory networks in the zebra finch brain, altering the expression of long non-coding RNAs, microRNAs, transcription factors and their targets. We also show evidence for rapid molecular evolution in the songbird lineage of genes that are regulated during song experience. These results indicate an active involvement of the genome in neural processes underlying vocal communication and identify potential genetic substrates for the evolution and regulation of this behaviour.
Related JoVE Video
The Pfam protein families database.
Nucleic Acids Res.
PUBLISHED: 11-17-2009
Show Abstract
Hide Abstract
Pfam is a widely used database of protein families and domains. This article describes a set of major updates that we have implemented in the latest release (version 24.0). The most important change is that we now use HMMER3, the latest version of the popular profile hidden Markov model package. This software is approximately 100 times faster than HMMER2 and is more sensitive due to the routine use of the forward algorithm. The move to HMMER3 has necessitated numerous changes to Pfam that are described in detail. Pfam release 24.0 contains 11,912 families, of which a large number have been significantly updated during the past two years. Pfam is available via servers in the UK (http://pfam.sanger.ac.uk/), the USA (http://pfam.janelia.org/) and Sweden (http://pfam.sbc.su.se/).
Related JoVE Video
Accurate estimation of gene evolutionary rates using XRATE, with an application to transmembrane proteins.
Mol. Biol. Evol.
PUBLISHED: 04-20-2009
Show Abstract
Hide Abstract
XRATE implements algorithms for comparative annotation, ancestral reconstruction, evolutionary rate estimation, and simulation. Its modeling repertoire includes phylogenetic stochastic context-free grammars and phylo-hidden Markov models. Following earlier tests of XRATE as a machine-learning tool suitable for alignment annotation, we now report the first tests of XRATE as a precise quantitative instrument for estimating evolutionary rates. We implement a codon model similar to that of Goldman and Yang (1994) (A codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol Biol Evol 11: 725-736) and show that XRATEs parameter estimates are consistent with those of PAML. To demonstrate its utility, we apply the model to measure the difference in selective strength (omega) between intracellular and secreted regions of type I transmembrane proteins. In 215 of 303 instances, a complex model with individual omega for each region provides a better fit to the data than the simpler single omega value model. Secreted portions of type I transmembrane proteins show an elevation in omega similar to that seen for secreted protein genes. Less stringent purifying selection is thus a general property of the extracellular milieu, rather than being specific to only soluble and secreted proteins.
Related JoVE Video
Evidence for conserved post-transcriptional roles of unitary pseudogenes and for frequent bifunctionality of mRNAs.
Genome Biol.
Show Abstract
Hide Abstract
ABSTRACT: BACKGROUND: Recent reports have highlighted instances of mRNAs that, in addition to coding for protein, regulate the abundance of related transcripts by altering microRNA availability. These two mRNA roles - one mediated by RNA and the other by protein - are inter-dependent and hence cannot easily be separated. Whether the RNA-mediated role of transcripts is important, per se, or whether it is a relatively innocuous consequence of competition by different transcripts for microRNA binding remains unknown. RESULTS: Here we took advantage of 48 loci that encoded proteins in the earliest eutherian ancestor, but whose protein-coding capability has since been lost specifically during rodent evolution. Sixty-five percent of such loci, which we term unitary pseudogenes, have retained their expression in mouse and their transcripts exhibit conserved tissue expression profiles. The maintenance of these unitary pseudogenes spatial expression profiles is associated with conservation of their microRNA response elements and these appear to preserve the post-transcriptional roles of their protein-coding ancestor. We used mouse Pbcas4, an exemplar of these transcribed unitary pseudogenes, to experimentally test our genome-wide predictions. We demonstrate that the role of Pbcas4 as a competitive endogenous RNA has been conserved and has outlived its ancestral genes loss of protein-coding potential. CONCLUSIONS: These results show that post-transcriptional regulation by bifunctional mRNAs can persist over long evolutionary time periods even after their protein coding ability has been lost.
Related JoVE Video
Insights into hominid evolution from the gorilla genome sequence.
Nature
Show Abstract
Hide Abstract
Gorillas are humans closest living relatives after chimpanzees, and are of comparable importance for the study of human origins and evolution. Here we present the assembly and analysis of a genome sequence for the western lowland gorilla, and compare the whole genomes of all extant great ape genera. We propose a synthesis of genetic and fossil evidence consistent with placing the human-chimpanzee and human-chimpanzee-gorilla speciation events at approximately 6 and 10 million years ago. In 30% of the genome, gorilla is closer to human or chimpanzee than the latter are to each other; this is rarer around coding genes, indicating pervasive selection throughout great ape evolution, and has functional consequences in gene expression. A comparison of protein coding genes reveals approximately 500 genes showing accelerated evolution on each of the gorilla, human and chimpanzee lineages, and evidence for parallel acceleration, particularly of genes involved in hearing. We also compare the western and eastern gorilla species, estimating an average sequence divergence time 1.75 million years ago, but with evidence for more recent genetic exchange and a population bottleneck in the eastern species. The use of the genome sequence in these and future analyses will promote a deeper understanding of great ape biology and evolution.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.