JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
DNA vaccine delivery by densely-packed and short microprojection arrays to skin protects against vaginal HSV-2 challenge.
Vaccine
PUBLISHED: 07-03-2010
Show Abstract
Hide Abstract
There is an unmet medical need for a prophylactic vaccine against herpes simplex virus (HSV). DNA vaccines and cutaneous vaccination have been tried for many applications, but few reports combine this vaccine composition and administration route. We compared DNA administration using the Nanopatch™, a solid microprojection device coated with vaccine comprised of thousands of short (110 ?m) densly-packed projections (70 ?m spacing), to standard intramuscular DNA vaccination in a mouse model of vaginal HSV-2 infection. A dose-response relationship was established for immunogenicity and survival in both vaccination routes. Appropriate doses administered by Nanopatch™ were highly immunogenic and enabled mouse survival. Vaginal HSV-2 DNA copy number day 1 post challenge correlated with survival, indicating that vaccine-elicited acquired immune responses can act quickly and locally. Solid, short, densely-packed arrays of microprojections applied to the skin are thus a promising route of administration for DNA vaccines.
Related JoVE Video
Improved DNA vaccination by skin-targeted delivery using dry-coated densely-packed microprojection arrays.
J Control Release
PUBLISHED: 06-02-2010
Show Abstract
Hide Abstract
HSV-2-gD2 DNA vaccine was precisely delivered to immunologically sensitive regions of the skin epithelia using dry-coated microprojection arrays. These arrays delivered a vaccine payload to the epidermis and the upper dermis of mouse skin. Immunomicroscopy results showed that, in 43 ± 5% of microprojection delivery sites, the DNA vaccine was delivered to contact with professional antigen presenting cells in the epidermal layer. Associated with this efficient delivery of the vaccine into the vicinity of the professional antigen presenting cells, we achieved superior antibody responses and statistically equal protection rate against an HSV-2 virus challenge, when compared with the mice immunized with intramuscular injection using needle and syringe, but with less than 1/10th of the delivered antigen.
Related JoVE Video
Direct CD1d-mediated stimulation of APC IL-12 production and protective immune response to virus infection in vivo.
J. Immunol.
PUBLISHED: 11-30-2009
Show Abstract
Hide Abstract
CD1d-restricted NKT cells rapidly stimulate innate and adaptive immunity through production of Th1 and/or Th2 cytokines and induction of CD1d(+) APC maturation. However, therapeutic exploitation of NKT cells has been hampered by their paucity and defects in human disease. NKT cell-APC interactions can be modeled by direct stimulation of human APCs through CD1d in vitro. We have now found that direct ligation with multiple CD1d mAbs also stimulated bioactive IL-12 release from CD1d(+) but not CD1d knockout murine splenocytes in vitro. Moreover, all of the CD1d mAbs tested also induced IL-12 as well as both IFN-gamma and IFN-alpha in vivo from CD1d(+) but not CD1d-deficient recipients. Unlike IFN-gamma, CD1d-induced IFN-alpha was at least partially dependent on invariant NKT cells. Optimal resistance to infection with picornavirus encephalomyocarditis virus is known to require CD1d-dependent APC IL-12-induced IFN-gamma as well as IFN-alpha. CD1d ligation in vivo enhanced systemic IL-12, IFN-gamma, and IFN-alpha and was protective against infection by encephalomyocarditis virus, suggesting an alternative interpretation for previous results involving CD1d "blocking" in other systems. Such protective responses, including elevations in Th1 cytokines, were also seen with CD1d F(ab)(2)s in vivo, whereas an IgM mAb (with presumably minimal tissue penetration) was comparably effective at protection in vivo as well as cytokine induction both in vivo and in vitro. Although presumably acting immediately "downstream," CD1d mAbs were protective later during infection than the invariant NKT cell agonist alpha-galactosylceramide. These data indicate that NKT cells can be bypassed with CD1d-mediated induction of robust Th1 immunity, which may have therapeutic potential both directly and as an adjuvant.
Related JoVE Video
Peripheral blood CD4 T-cell and plasmacytoid dendritic cell (pDC) reactivity to herpes simplex virus 2 and pDC number do not correlate with the clinical or virologic severity of recurrent genital herpes.
J. Virol.
Show Abstract
Hide Abstract
Leukocytes participate in the immune control of herpes simplex virus (HSV). Data from HIV coinfections, germ line mutations, and case reports suggest involvement of CD4 T cells and plasmacytoid dendritic cells (pDC). We investigated the relationships between these cells and recurrent genital herpes disease severity in the general population. Circulating CD4 T-cell responses to HSV-2 were measured in specimens from 67 immunocompetent individuals with measured genital lesion and HSV shedding rates. Similarly, pDC number and functional responses to HSV-2 were analyzed in 40 persons. CD4 responses and pDC concentrations and responses ranged as much as 100-fold between persons while displaying moderate within-person consistency over time. No correlations were observed between these immune response parameters and genital HSV-2 severity. Cytomegalovirus (CMV) coinfection was not correlated with differences in HSV-2-specific CD4 T-cell responses. The CD4 T-cell response to HSV-2 was much more polyfunctional than was the response to CMV. These data suggest that other immune cell subsets with alternate phenotypes or anatomical locations may be responsible for genital herpes control in chronically infected individuals.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.