JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Type 2 Iodothyronine Deiodinase is Up-regulated in Rat Slow- and Fast-twitch Skeletal Muscle during Prolonged Cold Exposure.
Am. J. Physiol. Endocrinol. Metab.
PUBLISHED: 10-09-2014
Show Abstract
Hide Abstract
During cold acclimation, shivering is progressively replaced by non-shivering thermogenesis. Brown adipose tissue (BAT) and skeletal muscle are relevant for non-shivering thermogenesis, which largely depends on thyroid hormone. Since the skeletal muscle fibers progressively adapt to cold exposure through poorly defined mechanisms, our intent was to determine whether skeletal muscle type 2 deiodinase (D2) induction could be implicated in the long-term skeletal muscle cold acclimation. We demonstrate that in the red oxidative soleus muscle, D2 activity increased by 2.3 fold after 3 days at 4°C, together with the brown adipose tissue D2 activity that increased by 10 fold. Soleus muscle and BAT D2 activities returned to the control levels after 10 days of cold exposure, when an increase of 2.8 fold in D2 activity was detected in white glycolytic gastrocnemius, but not in red oxidative gastrocnemius fibers. Propranolol did not prevent muscle D2 induction, but impaired the decrease of D2 in BAT and soleus after 10 days at 4 C. Cold exposure is accompanied by increased oxygen consumption, UCP3 and PGC1-alpha genes expression in skeletal muscles, which were partialy prevented by propranolol in soleus and gastrocnemius. Serum total and free T3 is increased during cold exposure in rats, even after 10 days when BAT D2 is already normalized, suggesting that skeletal muscle D2 activity significantly contribute to circulating T3 under this adaptive condition. In conclusion, cold exposure is accompanied by concerted changes in the metabolism of BAT, oxidative and glycolytic skeletal muscles that are paralleled by type 2 deiodinase activation.
Related JoVE Video
Unveiling the effects of berenil, a DNA-binding drug, on Trypanosoma cruzi: implications for kDNA ultrastructure and replication.
Parasitol. Res.
PUBLISHED: 05-14-2014
Show Abstract
Hide Abstract
Trypanosoma cruzi, the etiological agent of Chagas disease, exhibits a single mitochondrion with an enlarged portion termed kinetoplast. This unique structure harbors the mitochondrial DNA (kDNA), composed of interlocked molecules: minicircles and maxicircles. kDNA is a hallmark of kinetoplastids and for this reason constitutes a valuable target in chemotherapeutic and cell biology studies. In the present work, we analyzed the effects of berenil, a minor-groove-binding agent that acts preferentially at the kDNA, thereby affecting cell proliferation, ultrastructure, and mitochondrial activity of T. cruzi epimastigote form. Our results showed that berenil promoted a reduction on parasite growth when high concentrations were used; however, cell viability was not affected. This compound caused significant changes in kDNA arrangement, including the appearance of membrane profiles in the network and electron-lucent areas in the kinetoplast matrix, but nuclear ultrastructure was not modified. The use of the TdT technique, which specifically labels DNA, conjugated to atomic force microscopy analysis indicates that berenil prevents the minicircle decatenation of the network, thus impairing DNA replication and culminating in the appearance of dyskinetoplastic cells. Alterations in the kinetoplast network may be associated with kDNA lesions, as suggested by the quantitative PCR (qPCR) technique. Furthermore, parasites treated with berenil presented higher levels of reactive oxygen species and a slight decrease in the mitochondrial membrane potential and oxygen consumption. Taken together, our results reveal that this DNA-binding drug mainly affects kDNA topology and replication, reinforcing the idea that the kinetoplast represents a potential target for chemotherapy against trypanosomatids.
Related JoVE Video
Mitochondria: 3-bromopyruvate vs. mitochondria? A small molecule that attacks tumors by targeting their bioenergetic diversity.
Int. J. Biochem. Cell Biol.
PUBLISHED: 04-03-2014
Show Abstract
Hide Abstract
Enhanced glycolysis, the classic bioenergetic phenotype of cancer cells was described by Otto Warburg approximately 90 years ago. However, the Warburg hypothesis does not necessarily imply mitochondrial dysfunction. The alkyl-halogen, 3-bromopyruvate (3BP), would not be expected to have selective targets for cancer therapy due to its high potential reactivity toward many SH side groups. Contrary to predictions, 3BP interferes with glycolysis and oxidative phosphorylation in cancer cells without side effects in normal tissues. The mitochondrial hexokinase II has been claimed as the main target. This "Organelle in focus" article presents a historical view of the use of 3BP in biochemistry and its effects on ATP-producing pathways of cancer cells. I will discuss how the alkylated enzymes contribute to the cooperative collapse of mitochondria and apoptosis. Perspectives for targeting 3BP to bioenergetics enzymes for cancer treatment will be considered.
Related JoVE Video
Diphenyl diselenide protects endothelial cells against oxidized low density lipoprotein-induced injury: Involvement of mitochondrial function.
Biochimie
PUBLISHED: 01-24-2014
Show Abstract
Hide Abstract
Elevated levels of oxidized low density lipoprotein (oxLDL) are considered to be one of the major risk factors for atherosclerosis and cardiovascular morbidity. The early stages of atherosclerosis are initiated by the accumulation of oxLDL and the induction of toxic effects on endothelial cells, resulting in endothelial dysfunction. The aim of this study was to investigate how diphenyl diselenide (DD), an organoselenium compound, protect vascular endothelial cells against the toxic effects of oxLDL in vitro. Our data showed that the treatment of bovine endothelial aortic cells (BAEC) with DD (0.1-1 ?M) for 24 h protected from oxLDL-induced reactive species (RS) production and reduced glutathione (GSH) depletion. Moreover, DD (1 ?M) per se improved the maximal mitochondrial respiratory capacity and prevented oxLDL-induced mitochondrial damage. In addition, DD could prevent apoptosis induced by oxLDL in BAEC. Results from this study may provide insight into a possible molecular mechanism underlying DD suppression of oxLDL-mediated vascular endothelial dysfunction.
Related JoVE Video
How does the metabolism of tumour cells differ from that of normal cells.
Biosci. Rep.
PUBLISHED: 10-02-2013
Show Abstract
Hide Abstract
Tumour cells thrive in environments that would be hostile to their normal cell counterparts. Survival depends on the selection of cell lines that harbour modifications of both, gene regulation that shifts the balance between the cell cycle and apoptosis and those that involve the plasticity of the metabolic machinery. With regards to metabolism, the selected phenotypes usually display enhanced anaerobic glycolysis even in the presence of oxygen, the so-called Warburg effect, and anabolic pathways that provide precursors for the synthesis of lipids, proteins and DNA. The review will discuss the original ideas of Otto Warburg and how they initially led to the notion that mitochondria of tumour cells were dysfunctional. Data will be presented to show that not only the organelles are viable and respiring, but that they are key players in tumorigenesis and metastasis. Likewise, interconnecting pathways that stand out in the tumour phenotype and that require intact mitochondria such as glutaminolysis will be addressed. Furthermore, comments will be made as to how the peculiarities of the biochemistry of tumour cells renders them amenable to new forms of treatment by highlighting possible targets for inhibitors. In this respect, a case study describing the effect of a metabolite analogue, the alkylating agent 3BP (3-bromopyruvate), on glycolytic enzyme targets will be presented.
Related JoVE Video
2,4-Dinitrophenol induces neural differentiation of murine embryonic stem cells.
Stem Cell Res
PUBLISHED: 04-22-2013
Show Abstract
Hide Abstract
2,4-Dinitrophenol (DNP) is a neuroprotective compound previously shown to promote neuronal differentiation in a neuroblastoma cell line and neurite outgrowth in primary neurons. Here, we tested the hypothesis that DNP could induce neurogenesis in embryonic stem cells (ESCs). Murine ESCs, grown as embryoid bodies (EBs), were exposed to 20 ?M DNP (or vehicle) for 4 days. Significant increases in the proportion of nestin- and ?-tubulin III-positive cells were detected after EB exposure to DNP, accompanied by enhanced glial fibrillary acidic protein (GFAP), phosphorylated extracellular signal-regulated kinase (p-ERK) and ATP-linked oxygen consumption, thought to mediate DNP-induced neural differentiation. DNP further protected ESCs from cell death, as indicated by reduced caspase-3 positive cells, and increased proliferation. Cell migration from EBs was significantly higher in DNP-treated EBs, and migrating cells were positive for nestin, ß-tubulin III and MAP2, similar to that observed with retinoic acid (RA)-treated EBs. Compared to RA, however, DNP exerted a marked neuritogenic effect on differentiating ESCs, increasing the average length and number of neurites per cell. Results establish that DNP induces neural differentiation of ESCs, accompanied by cell proliferation, migration and neuritogenesis, suggesting that DNP may be a novel tool to induce neurogenesis in embryonic stem cells.
Related JoVE Video
Nitric oxide inhibits succinate dehydrogenase-driven oxygen consumption in potato tuber mitochondria in an oxygen tension-independent manner.
Biochem. J.
PUBLISHED: 02-09-2013
Show Abstract
Hide Abstract
NO (nitric oxide) is described as an inhibitor of plant and mammalian respiratory chains owing to its high affinity for COX (cytochrome c oxidase), which hinders the reduction of oxygen to water. In the present study we show that in plant mitochondria NO may interfere with other respiratory complexes as well. We analysed oxygen consumption supported by complex I and/or complex II and/or external NADH dehydrogenase in Percoll-isolated potato tuber (Solanum tuberosum) mitochondria. When mitochondrial respiration was stimulated by succinate, adding the NO donors SNAP (S-nitroso-N-acetyl-DL-penicillamine) or DETA-NONOate caused a 70% reduction in oxygen consumption rate in state 3 (stimulated with 1 mM of ADP). This inhibition was followed by a significant increase in the Km value of SDH (succinate dehydrogenase) for succinate (Km of 0.77±0.19 to 34.3±5.9 mM, in the presence of NO). When mitochondrial respiration was stimulated by external NADH dehydrogenase or complex I, NO had no effect on respiration. NO itself and DETA-NONOate had similar effects to SNAP. No significant inhibition of respiration was observed in the absence of ADP. More importantly, SNAP inhibited PTM (potato tuber mitochondria) respiration independently of oxygen tensions, indicating a different kinetic mechanism from that observed in mammalian mitochondria. We also observed, in an FAD reduction assay, that SNAP blocked the intrinsic SDH electron flow in much the same way as TTFA (thenoyltrifluoroacetone), a non-competitive SDH inhibitor. We suggest that NO inhibits SDH in its ubiquinone site or its Fe-S centres. These data indicate that SDH has an alternative site of NO action in plant mitochondria.
Related JoVE Video
Insulin prevents mitochondrial generation of H?O? in rat brain.
Exp. Neurol.
PUBLISHED: 01-16-2013
Show Abstract
Hide Abstract
The mitochondrial electron transport system (ETS) is a main source of cellular ROS, including hydrogen peroxide (H?O?). The production of H?O? also involves the mitochondrial membrane potential (??m) and oxygen consumption. Impaired insulin signaling causes oxidative neuronal damage and places the brain at risk of neurodegeneration. We evaluated whether insulin signaling cross-talks with ETS components (complexes I and F?F?ATP synthase) and ??m to regulate mitochondrial H?O? production, in tissue preparations from rat brain. Insulin (50 to 100 ng/mL) decreased H?O? production in synaptosomal preparations in high Na(+) buffer (polarized state), stimulated by glucose and pyruvate, without affecting the oxygen consumption. In addition, insulin (10 to 100 ng/mL) decreased H?O? production induced by succinate in synaptosomes in high K(+) (depolarized state), whereas wortmannin and LY290042, inhibitors of the PI3K pathway, reversed this effect; heated insulin had no effect. Insulin decreased H?O? production when complexes I and F?F?ATP synthase were inhibited by rotenone and oligomycin respectively suggesting a target effect on complex III. Also, insulin prevented the generation of maximum level of ??m induced by succinate. The PI3K inhibitors and heated insulin maintained the maximum level of ??m induced by succinate in synaptosomes in a depolarized state. Similarly, insulin decreased ROS production in neuronal cultures. In mitochondrial preparations, insulin neither modulated H2O2 production or oxygen consumption. In conclusion, the normal downstream insulin receptor signaling is necessary to regulate complex III of ETS avoiding the generation of maximal ??m and increased mitochondrial H2O2 production.
Related JoVE Video
Bioenergetic failure of human peripheral blood monocytes in patients with septic shock is mediated by reduced F1Fo adenosine-5-triphosphate synthase activity.
Crit. Care Med.
PUBLISHED: 02-22-2011
Show Abstract
Hide Abstract
Increasing evidence points to the role of mitochondrial dysfunction in the pathogenesis of sepsis. Previous data indicate that mitochondrial function is affected in monocytes from septic patients, but the underlying mechanisms and the impact of these changes on the patients outcome are unknown. We aimed to determine the mechanisms involved in mitochondrial dysfunction in peripheral blood mononuclear cells from patients with septic shock.
Related JoVE Video
Energy metabolism in H460 lung cancer cells: effects of histone deacetylase inhibitors.
PLoS ONE
PUBLISHED: 02-01-2011
Show Abstract
Hide Abstract
Tumor cells are characterized by accelerated growth usually accompanied by up-regulated pathways that ultimately increase the rate of ATP production. These cells can suffer metabolic reprogramming, resulting in distinct bioenergetic phenotypes, generally enhancing glycolysis channeled to lactate production. In the present work we showed metabolic reprogramming by means of inhibitors of histone deacetylase (HDACis), sodium butyrate and trichostatin. This treatment was able to shift energy metabolism by activating mitochondrial systems such as the respiratory chain and oxidative phosphorylation that were largely repressed in the untreated controls.
Related JoVE Video
Amyloid-? triggers the release of neuronal hexokinase 1 from mitochondria.
PLoS ONE
PUBLISHED: 10-01-2010
Show Abstract
Hide Abstract
Brain accumulation of the amyloid-? peptide (A?) and oxidative stress underlie neuronal dysfunction and memory loss in Alzheimers disease (AD). Hexokinase (HK), a key glycolytic enzyme, plays important pro-survival roles, reducing mitochondrial reactive oxygen species (ROS) generation and preventing apoptosis in neurons and other cell types. Brain isozyme HKI is mainly associated with mitochondria and HK release from mitochondria causes a significant decrease in enzyme activity and triggers oxidative damage. We here investigated the relationship between A?-induced oxidative stress and HK activity. We found that A? triggered HKI detachment from mitochondria decreasing HKI activity in cortical neurons. A? oligomers further impair energy metabolism by decreasing neuronal ATP levels. A?-induced HKI cellular redistribution was accompanied by excessive ROS generation and neuronal death. 2-deoxyglucose blocked A?-induced oxidative stress and neuronal death. Results suggest that A?-induced cellular redistribution and inactivation of neuronal HKI play important roles in oxidative stress and neurodegeneration in AD.
Related JoVE Video
Mitochondrial dysfunction induced by different organochalchogens is mediated by thiol oxidation and is not dependent of the classical mitochondrial permeability transition pore opening.
Toxicol. Sci.
PUBLISHED: 06-23-2010
Show Abstract
Hide Abstract
Ebselen (Ebs) and diphenyl diselenide [(PhSe)(2)] readily oxidize thiol groups. Here we studied mitochondrial swelling changes in mitochondrial potential (Deltapsim), NAD(P)H oxidation, reactive oxygen species production, protein aggregate formation, and oxygen consumption as ending points of their in vitro toxicity. Specifically, we tested the hypothesis that organochalchogens toxicity could be associated with mitochondrial dysfunction via oxidation of vicinal thiol groups that are known to be involved in the regulation of mitochondrial permeability (Petronilli et al. J. Biol. Chem., 269; 16638; 1994). Furthermore, we investigated the possible mechanism(s) by which these organochalchogens could disrupt liver mitochondrial function. Ebs and (PhSe)(2) caused mitochondrial depolarization and swelling in a concentration-dependent manner. Furthermore, both organochalchogens caused rapid oxidation of the mitochondrial pyridine nucleotides (NAD(P)H) pool, likely reflecting the consequence and not the cause of increased mitochondrial permeability (Costantini, P., Chernyak, B. V., Petronilli, V., and Bernardi, P. (1996). Modulation of the mitochondrial permeability transition pore (PTP) by pyridine nucleotides and dithiol oxidation at two separate sites. J. Biol. Chem. 271, 6746-6751). The organochalchogens-induced mitochondrial dysfunction was prevented by the reducing agent dithiothreitol (DTT). Ebs- and (PhSe)(2)-induced mitochondrial depolarization and swelling were unchanged by ruthenium red (4microM), butylated hydroxytoluene (2.5microM), or cyclosporine A (1microM). N-ethylmaleimide enhanced the organochalchogens-induced mitochondrial depolarization, without affecting the magnitude of the swelling response. In contrast, iodoacetic acid did not modify the effects of Ebs or (PhSe)(2) on the mitochondria. Additionally, Ebs and (PhSe)(2) decreased the basal 2 7 dichlorofluorescin diacetate (H(2)-DCFDA) oxidation and oxygen consumption rate in state 3 and increased it during the state 4 of oxidative phosphorylation and induced the formation of protein aggregates, which were prevented by DTT. However, DTT failed to reverse the formation of protein aggregates, when it was added after a preincubation of liver mitochondria with Ebs or (PhSe)(2). Similarly, DTT did not reverse the Ebs- or (PhSe)(2)-induced Deltapsim collapse or swelling, when it was added after a preincubation period of mitochondria with chalcogenides. These results show that Ebs and (PhSe)(2) can effectively induce mitochondrial dysfunction and suggest that effects of these compounds are associated with mitochondrial thiol groups oxidation. The inability of cyclosporine A to reverse the Ebs- and (PhSe)(2)-induced mitochondrial effects suggests that the redox-regulated mitochondrial permeability transition (MPT) pore was mechanistically regulated in a manner that is distinct from the classical MPT pore.
Related JoVE Video
Characterization of non-cytosolic hexokinase activity in white skeletal muscle from goldfish (Carassius auratus L.) and the effect of cold acclimation.
Biosci. Rep.
PUBLISHED: 01-09-2010
Show Abstract
Hide Abstract
HK (hexokinase) is an enzyme involved in the first step in the glucose metabolism pathway, converting glucose into G6P (glucose 6-phosphate). Owing to the importance of skeletal muscle for fish swimming and acclimation processes, we used goldfish (Carassius auratus L.) white muscle in order to investigate subcellular distribution and kinetics of HK. In this study, we report that HK activity is predominantly localized in the mitochondrial fraction [NC-HK (non-cytosolic HK)] in goldfish white muscle. Studies of the kinetic parameters revealed that the Km (Michaelis-Menten constant) for glucose was 0.41±0.03 mM and that for mannose was 3-fold lower, whereas the affinity for fructose was too low to be measured. The Km for ATP was 0.88±0.05 mM, whereas no activity was observed when either GTP or ITP was used as a phosphate donor. A moderate inhibition (20-40%) was found for ADP and AMP. Similar to mammalian HK, G6P and glucose analogues were able to promote an inhibition of between 85 and 100% of activity. Here, we found that acclimation of goldfish at 5°C promoted a 2.5-fold increase in NC-HK compared with its counterpart acclimated at 25°C. However, cytosolic HK activity was not altered after thermal acclimation. In summary, our results suggest that the goldfish has a constitutive NC-HK that shows some similarities to mammalian HK-II and, curiously, may play a role in the broad metabolic changes required during the cold acclimation process.
Related JoVE Video
Expression profile of rat hippocampal neurons treated with the neuroprotective compound 2,4-dinitrophenol: up-regulation of cAMP signaling genes.
Neurotox Res
PUBLISHED: 06-11-2009
Show Abstract
Hide Abstract
2,4-Dinitrophenol (DNP) is classically known as a mitochondrial uncoupler and, at high concentrations, is toxic to a variety of cells. However, it has recently been shown that, at subtoxic concentrations, DNP protects neurons against a variety of insults and promotes neuronal differentiation and neuritogenesis. The molecular and cellular mechanisms underlying the beneficial neuroactive properties of DNP are still largely unknown. We have now used DNA microarray analysis to investigate changes in gene expression in rat hippocampal neurons in culture treated with low micromolar concentrations of DNP. Under conditions that did not affect neuronal viability, high-energy phosphate levels or mitochondrial oxygen consumption, DNP induced up-regulation of 275 genes and down-regulation of 231 genes. Significantly, several up-regulated genes were linked to intracellular cAMP signaling, known to be involved in neurite outgrowth, synaptic plasticity, and neuronal survival. Differential expression of specific genes was validated by quantitative RT-PCR using independent samples. Results shed light on molecular mechanisms underlying neuroprotection by DNP and point to possible targets for development of novel therapeutics for neurodegenerative disorders.
Related JoVE Video
Reactive oxygen species production by potato tuber mitochondria is modulated by mitochondrially bound hexokinase activity.
Plant Physiol.
PUBLISHED: 05-15-2009
Show Abstract
Hide Abstract
Potato tuber (Solanum tuberosum) mitochondria (PTM) have a mitochondrially bound hexokinase (HK) activity that exhibits a pronounced sensitivity to ADP inhibition. Here we investigated the role of mitochondrial HK activity in PTM reactive oxygen species generation. Mitochondrial HK has a 10-fold higher affinity for glucose (Glc) than for fructose (KMGlc=140 microM versus KMFrc=1,375 microM). Activation of PTM respiration by succinate led to an increase in hydrogen peroxide (H2O2) release that was abrogated by mitochondrial HK activation. Mitochondrial HK activity caused a decrease in the mitochondrial membrane potential and an increase in oxygen consumption by PTM. Inhibition of Glc phosphorylation by mannoheptulose or GlcNAc induced a rapid increase in H2O2 release. The blockage of H2O2 release sustained by Glc was reverted by oligomycin and atractyloside, indicating that ADP recycles through the adenine nucleotide translocator and F0F1ATP synthase is operative during the mitochondrial HK reaction. Inhibition of mitochondrial HK activity by 60% to 70% caused an increase of 50% in the maximal rate of H2O2 release. Inhibition in H2O2 release by mitochondrial HK activity was comparable to, or even more potent, than that observed for StUCP (S. tuberosum uncoupling protein) activity. The inhibition of H2O2 release in PTM was two orders of magnitude more selective for the ADP produced from the mitochondrial HK reaction than for that derived from soluble yeast (Saccharomyces cerevisiae) HK. Modulation of H2O2 release and oxygen consumption by Glc and mitochondrial HK inhibitors in potato tuber slices shows that hexoses and mitochondrial HK may act as a potent preventive antioxidant mechanism in potato tubers.
Related JoVE Video
Blood-feeding induces reversible functional changes in flight muscle mitochondria of Aedes aegypti mosquito.
PLoS ONE
PUBLISHED: 04-27-2009
Show Abstract
Hide Abstract
Hematophagy poses a challenge to blood-feeding organisms since products of blood digestion can exert cellular deleterious effects. Mitochondria perform multiple roles in cell biology acting as the site of aerobic energy-transducing pathways, and also an important source of reactive oxygen species (ROS), modulating redox metabolism. Therefore, regulation of mitochondrial function should be relevant for hematophagous arthropods. Here, we investigated the effects of blood-feeding on flight muscle (FM) mitochondria from the mosquito Aedes aegypti, a vector of dengue and yellow fever.
Related JoVE Video
Modulation of Trypanosoma rangeli ecto-phosphatase activity by hydrogen peroxide.
Free Radic. Biol. Med.
PUBLISHED: 04-14-2009
Show Abstract
Hide Abstract
As a protozoan parasite of hematophagous insects, Trypanosoma rangeli epimastigotes are exposed to reactive oxygen species during development in hosts. In this work, we investigated the role of H(2)O(2) as a modulator of the ecto-phosphatase activity present in living T. rangeli. We observed that H(2)O(2) inhibits ecto-phosphatase activities in the short and long epimastigote forms of T. rangeli. Ecto-phosphatase activity found in the short form was more sensitive than that found in the long form. Moreover, H(2)O(2) inhibited ecto-phosphatase activity of the short form in a dose-dependent manner and this inhibition was reversible after H(2)O(2) removal. This effect was not observed for T. rangeli ecto-ATPase, another ecto-enzyme present on the external surface of T. rangeli. Cysteine, beta-mercaptoethanol, and reduced glutathione were able to revert the enzyme inhibition promoted by H(2)O(2). Catalase and glutathione peroxidase stimulated this ecto-phosphatase activity, whereas superoxide dismutase was not able to modulate this activity. The ecto-phosphatase activity was also activated by FCCP and inhibited by oligomycin. It seems that H(2)O(2) plays a fundamental role in the regulation of cellular processes of these organisms. We showed, for the first time, that these parasites can produce H(2)O(2), and it is able to regulate ecto-phosphatase activity.
Related JoVE Video
Inhibition of energy-producing pathways of HepG2 cells by 3-bromopyruvate.
Biochem. J.
PUBLISHED: 02-14-2009
Show Abstract
Hide Abstract
3-BrPA (3-bromopyruvate) is an alkylating agent with anti-tumoral activity on hepatocellular carcinoma. This compound inhibits cellular ATP production owing to its action on glycolysis and oxidative phosphorylation; however, the specific metabolic steps and mechanisms of 3-BrPA action in human hepatocellular carcinomas, particularly its effects on mitochondrial energetics, are poorly understood. In the present study it was found that incubation of HepG2 cells with a low concentration of 3-BrPA for a short period (150 microM for 30 min) significantly affected both glycolysis and mitochondrial respiratory functions. The activity of mitochondrial hexokinase was not inhibited by 150 microM 3-BrPA, but this concentration caused more than 70% inhibition of GAPDH (glyceraldehyde-3-phosphate dehydrogenase) and 3-phosphoglycerate kinase activities. Additionally, 3-BrPA treatment significantly impaired lactate production by HepG2 cells, even when glucose was withdrawn from the incubation medium. Oxygen consumption of HepG2 cells supported by either pyruvate/malate or succinate was inhibited when cells were pre-incubated with 3-BrPA in glucose-free medium. On the other hand, when cells were pre-incubated in glucose-supplemented medium, oxygen consumption was affected only when succinate was used as the oxidizable substrate. An increase in oligomycin-independent respiration was observed in HepG2 cells treated with 3-BrPA only when incubated in glucose-supplemented medium, indicating that 3-BrPA induces mitochondrial proton leakage as well as blocking the electron transport system. The activity of succinate dehydrogenase was inhibited by 70% by 3-BrPA treatment. These results suggest that the combined action of 3-BrPA on succinate dehydrogenase and on glycolysis, inhibiting steps downstream of the phosphorylation of glucose, play an important role in HepG2 cell death.
Related JoVE Video
Cardiac systolic dysfunction in doxorubicin-challenged rats is associated with upregulation of MuRF2 and MuRF3 E3 ligases.
Exp Clin Cardiol
Show Abstract
Hide Abstract
Doxorubicin (DOXO) is an efficient and low-cost chemotherapeutic agent. The use of DOXO is limited by its side effects, including cardiotoxicity, that may progress to cardiac failure as a result of multifactorial events that have not yet been fully elucidated. In the present study, the effects of DOXO at two different doses were analyzed to identify early functional and molecular markers of cardiac distress. One group of rats received 7.5 mg/kg of DOXO (low-dose group) and was followed for 20 weeks. A subset of these animals was then subjected to an additional cycle of DOXO treatment, generating a cumulative dose of 20 mg/kg (high-dose group). Physiological and biochemical parameters were assessed in both treatment groups and in a control group that received saline. Systolic dysfunction was observed only in the high-dose group. Mitochondrial function analysis showed a clear reduction in oxidative cellular respiration for animals in both DOXO treatment groups, with evidence of complex I damage being observed. Transcriptional analysis by quantitative polymerase chain reaction revealed an increase in atrial natriuretic peptide transcript in the high-dose group, which is consistent with cardiac failure. Analysis of transcription levels of key components of the cardiac ubiquitin-proteasome system found that the ubiquitin E3 ligase muscle ring finger 1 (MuRF1) was upregulated in both the low- and high-dose DOXO groups. MuRF2 and MuRF3 were also upregulated in the high-dose group but not in the low-dose group. This molecular profile may be useful as an early physiological and energetic cardiac failure indicator for testing therapeutic interventions in animal models.
Related JoVE Video
Cold acclimation increases mitochondrial oxidative capacity without inducing mitochondrial uncoupling in goldfish white skeletal muscle.
Biol Open
Show Abstract
Hide Abstract
Goldfish have been used for cold acclimation studies, which have focused on changes in glycolytic and oxidative enzymes or alterations in lipid composition in skeletal muscle. Here we examine the effects of cold acclimation on the functional properties of isolated mitochondria and permeabilized fibers from goldfish white skeletal muscle, focusing on understanding the types of changes that occur in the mitochondrial respiratory states. We observed that cold acclimation promoted a significant increase in the mitochondrial oxygen consumption rates. Western blot analysis showed that UCP3 was raised by ?1.5-fold in cold-acclimated muscle mitochondria. Similarly, we also evidenced a rise in the adenine nucleotide translocase content in cold-acclimated muscle mitochondria compared to warm-acclimated mitochondria (0.96±0.05 vs 0.68±0.02?nmol carboxyatractyloside mg(-1) protein). This was followed by a 2-fold increment in the citrate synthase activity, which suggests a higher mitochondrial content in cold-acclimated goldfish. Even with higher levels of UCP3 and ANT, the effects of activator (palmitate) and inhibitors (carboxyatractyloside and GDP) on mitochondrial parameters were similar in both warm- and cold-acclimated goldfish. Thus, we propose that cold acclimation in goldfish promotes an increase in functional oxidative capacity, with higher mitochondrial content without changes in the mitochondrial uncoupling pathways.
Related JoVE Video
The Impact of Stem Cells on Electron Fluxes, Proton Translocation and ATP Synthesis in Kidney Mitochondria After Ischemia/Reperfusion.
Cell Transplant
Show Abstract
Hide Abstract
Tissue damage by ischemia/reperfusion (I/R) results from a temporary cessation of blood flow followed by restoration of circulation. The injury depresses mitochondrial respiration, increases the production of reactive oxygen species (ROS), decreases the mitochondrial transmembrane potential and stimulates invasion by inflammatory cells. The primary objective of this work was to address the potential use of bone marrow stem cells (BMSCs) to preserve/restore mitochondrial function in the kidney after I/R. Mitochondria from renal proximal tubule cells were isolated by differential centrifugation from rat kidneys subjected to I/R (clamping of renal arteries followed by release of circulation after 30 min), without or with subcapsular administration of BMSCs. Respiration starting from mitochondrial complex II was strongly affected following I/R. However, when BMSCs were injected before ischemia or together with reperfusion, normal electron fluxes, electrochemical gradient for protons and ATP synthesis were almost completely preserved, and mitochondrial ROS formation occurred at low rate. In homogenates from cultured renal cells transiently treated with antimycin A, the co-culture with BMSCs induced a remarkable increase in protein S-nitrosylation that was similar to that found in mitochondria isolated from I/R rats, evidence that BMSCs protected against both superoxide anion and peroxynitrite. Labeled BMSCs migrated to damaged tubules, suggesting that the injury functions as a signal to attract and host the injected BMSCs. Structural correlates of BMSC injection in kidney tissue included stimulus of tubule cell proliferation, inhibition of apoptosis and decreased inflammatory response. Histopathological analysis demonstrated a score of complete preservation of tubular structures by BMSCs, associated with normal plasma creatinine and urinary osmolality. The key findings shed light on the mechanisms that explain, at the mitochondrial level, how stem cells prevent damage by I/R. The action of BMSCs on mitochondrial functions raises the possibility that autologous BMSCs may help prevent I/R injuries associated with transplantation and acute renal diseases.
Related JoVE Video
Pluripotent stem cells as a model to study oxygen metabolism in neurogenesis and neurodevelopmental disorders.
Arch. Biochem. Biophys.
Show Abstract
Hide Abstract
Reactive oxygen species (ROS) and oxygen (O2) have been implicated in neurogenesis and self-renewal of neural progenitor cells (NPCs). On the other hand, oxidative unbalance, either by an impairment of antioxidant defenses or by an intensified production of ROS, is increasingly related to risk factors of neurodevelopmental disorders, such as schizophrenia. In this scenario, human induced pluripotent stem cells (hiPSCs) emerged as an interesting platform for the study of cellular and molecular aspects of this mental disorder, by complementing other experimental models, with exclusive advantages such as the recapitulation of brain development. Herein we discuss the role of O2/ROS signaling for neuronal differentiation and how its unbalance could be related to neurodevelopmental disorders, such as schizophrenia. Identifying the role of O2/ROS in neurogenesis as well as tackling oxidative stress and its disturbances in schizophrenic patients derived cells will provide an interesting opportunity for the study of neural stem cells differentiation and neurodevelopmental disorders.
Related JoVE Video
3-Bromopyruvate inhibits calcium uptake by sarcoplasmic reticulum vesicles but not SERCA ATP hydrolysis activity.
Int. J. Biochem. Cell Biol.
Show Abstract
Hide Abstract
3-Bromopyruvate (3BrPA) is an antitumor agent that alkylates the thiol groups of enzymes and has been proposed as a treatment for neoplasias because of its specific reactivity with metabolic energy transducing enzymes in tumor cells. In this study, we show that the sarco/endoplasmic reticulum calcium (Ca(2+)) ATPase (SERCA) type 1 is one of the target enzymes of 3BrPA activity. Sarco/endoplasmic reticulum vesicles (SRV) were incubated in the presence of 1mM 3BrPA, which was unable to inhibit the ATPase activity of SERCA. However, Ca(2+)-uptake activity was significantly inhibited by 80% with 150 ?M 3BrPA. These results indicate that 3BrPA has the ability to uncouple the ATP hydrolysis from the calcium transport activities. In addition, we observed that the inclusion of 2mM reduced glutathione (GSH) in the reaction medium with different 3BrPA concentrations promoted an increase in 40% in ATPase activity and protects the inhibition promoted by 3BrPA in calcium uptake activity. This derivatization is accompanied by a decrease of reduced cysteine (Cys), suggesting that GSH and 3BrPA increases SERCA activity and transport by pyruvylation and/or S-glutathiolation mediated by GSH at a critical Cys residues of the SERCA.
Related JoVE Video
Effect of the antitumoral alkylating agent 3-bromopyruvate on mitochondrial respiration: role of mitochondrially bound hexokinase.
J. Bioenerg. Biomembr.
Show Abstract
Hide Abstract
The alkylating agent 3-Bromopyruvate (3-BrPA) has been used as an anti-tumoral drug due to its anti-proliferative property in hepatomas cells. This propriety is believed to disturb glycolysis and respiration, which leads to a decreased rate of ATP synthesis. In this study, we evaluated the effects of the alkylating agent 3-BrPA on the respiratory states and the metabolic steps of the mitochondria of mice liver, brain and in human hepatocarcinoma cell line HepG2. The mitochondrial membrane potential (??(m)), O(2) consumption and dehydrogenase activities were rapidly dissipated/or inhibited by 3-BrPA in respiration medium containing ADP and succinate as respiratory substrate. 3-BrPA inhibition was reverted by reduced glutathione (GSH). Respiration induced by yeast soluble hexokinase (HK) was rapidly inhibited by 3-BrPA. Similar results were observed using mice brain mitochondria that present HK naturally bound to the outer mitochondrial membrane. When the adenine nucleotide transporter (ANT) was blocked by the carboxyatractiloside, the 3-BrPA effect was significantly delayed. In permeabilized human hepatoma HepG2 cells that present HK type II bound to mitochondria (mt-HK II), the inhibiting effect occurred faster when the endogenous HK activity was activated by 2-deoxyglucose (2-DOG). Inhibition of mt-HK II by glucose-6-phosphate retards the mitochondria to react with 3-BrPA. The HK activities recovered in HepG2 cells treated or not with 3-BrPA were practically the same. These results suggest that mitochondrially bound HK supporting the ADP/ATP exchange activity levels facilitates the 3-BrPA inhibition reaction in tumors mitochondria by a proton motive force-dependent dynamic equilibrium between sensitive and less sensitive SDH in the electron transport system.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.